Simulink® 3D Animation™

User's Guide

<

MATLAB&SIMULINK?

R2018b >) MathWorks’

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® 3D Animation™ User's Guide
© COPYRIGHT 2001-2018 by HUMUSOFT s.r.0. and The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

August 2001
July 2002
October 2002
June 2004
October 2004
March 2005
April 2005
September 2005

March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018

First printing
Second printing
Online only
Third printing
Fourth printing
Online only
Online only
Online only

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 2.0 (Release 12.1)
Revised for Version 3.0 (Release 13)
Revised for Version 3.1 (Release 13)
Revised for Version 4.0 (Release 14)
Revised for Version 4.0.1 (Release 14SP1)
Revised for Version 4.1 (Release 14SP2)
Revised for Version 4.2 (Release 14SP2+)
Minor revision for Version 4.2.1 (Release
14SP3)

Revised for Version 4.3
Revised for Version 4.4
Revised for Version 4.5
Revised for Version 4.6
Revised for Version 4.7 (Release 2008a)
Revised for Version 4.8 (Release 2008b)
Revised for Version 5.0 (Release 2009a)
Revised for Version 5.1.1 (Release 2010a)
Revised for Version 5.2 (Release 2010Db)
Revised for Version 5.3 (Release 2011a)
Revised for Version 6.0 (Release 2011Db)
Revised for Version 6.1 (Release 2012a)
Revised for Version 6.2 (Release 2012b)
Revised for Version 6.3 (Release 2013a)
Revised for Version 7.0 (Release 2013b)
Revised for Version 7.1 (Release 2014a)
Revised for Version 7.2 (Release 2014b)
Revised for Version 7.3 (Release 2015a)
Revised for Version 7.4 (Release 2015b)
Revised for Version 7.5 (Release 2016a)
Revised for Version 7.6 (Release 2016b)
Revised for Version 7.7 (Release 2017a)
Revised for Version 7.8 (Release 2017Db)
Revised for Version 8.0 (Release 2018a)
Revised for Version 8.1 (Release 2018b)

Release 2006a)
Release 2006b)
Release 2007a)
Release 2007b)

—~ o~~~ o~ —~

o~ o~ o~ ~ ~ ~ —~ —~ —

Contents

Getting Started

1]

Simulink 3D Animation Product Description 1-2
Key Features 1-2
Expected Background 1-3
Workflow for Building and Using Virtual Worlds 1-4
Virtual Reality World Models of Dynamic Systems 1-4
Set up Your Working Environment 1-4
Build a Virtual RealityWorld 1-6
Link to a Virtual RealityWorld 1-7
View Dynamic System Simulations 1-8
Share Dynamic System Simulation Visualizations 1-8
MATLAB Compiler Support 1-10
X3DSupport 1-11
XD 1-11
Relationship of X3Dand VRML 1-11
X3D Support in Simulink 3D Animation 1-12
Convert a VRML FiletoX3D Format 1-12
Virtual Reality Modeling Language (VRML) 1-14
Relationship of VRMLand X3D 1-14
VRML ... 1-14
VRML Support 1-14
VRML Compatibility, 1-15
Virtual World Coordinate System 1-16
VRMLFileFormat 1-17
Virtual Reality World and Dynamic System Examples 1-21
Simulink Interface Examples 1-21
MATLAB Interface Examples 1-33

Installation

2|

Set the Default Viewer 2-2
Set Simulink 3D Animation Preferences 2-6
Simulink 3D Animation Preferences Dialog Box 2-8
3D World Editor Preferences DialogBox 2-10
Canvas Preferences Dialog Box 2-11
Figure Appearance Preferences Dialog Box 2-11
Figure Rendering Preferences DialogBox 2-12
Figure 2-D Recording Preferences DialogBox 2-14
Figure Frame Capture Preferences 2-15
World Preferences Dialog Box 2-16
Install V-Realm Editor 2-18
V-Realm Editor Installation on Windows Platforms 2-18
V-Realm Builder Help 2-19
Uninstall V-Realm Builder 2-19
Test the Viewer Installation 2-21
Section Overview, 2-21
Simulink Testing 2-21
MATTIABTestingo 2-25

3|

Connect Virtual Worlds and Models 3-2
Output Simulation Data to a Virtual World 3-2
Input Virtual World DatatoaModel 3-8
Change the Associated Virtual World 3-9

Opena ViewerWindow 3-12

Display Virtual World and Start Simulation 3-13

View Virtual World on Host Computer 3-16

Contents

View Virtual World Remeotely 3-20
Modify Remote Virtual World Via Sensor Events 3-26

Interact with Generated Code 3-27

4

Create vrworld Object for a Virtual World 4-2
Open a Virtual World with MATIAB 4-4
Interact with a Virtual World with MATLAB 4-6
SetValuesforNodes 4-6
Read Sensor Values Using MATLAB 4-9
Close and Delete a virworld Object 4-11
Animation Recording 4-12
Recording Formats 4-12
Manual and Scheduled Animation Recording 4-13
Define File Name Tokens 4-14
Default File Name Format 4-14
Uses for File Name Tokens 4-14
File Name Tokens 4-16
Manual 3-D Recording with MATLAB 4-18
Manual 2-D AVI Recording with MATLAB 4-21
Scheduled 3-D Recording with MATLAB 4-24
Scheduled 2-D AVI Recording with MATLAB 4-27
Record Animations for Unconnected Virtual Worlds 4-30

viii

Contents

Play Animation Files 4-34
Play Virtual World Animation Files 4-34
Play AVI Animation Files 4-35

S|

Choose a Virtual World Editor 5-2
Editors for Virtual Worlds 5-2
Setthe Default Editor 5-6

Build and Connect a Virtual World 5-9
Introduction 5-9
Definethe Problem 5-9
Add a Simulink 3D Animation Block 5-11
Open a New Virtual World 5-12
Add Nodes e 5-13
Link to a Simulink Model 5-21

USe SeNSOISo 5-26
Add Sensors to Virtual Worlds 5-26
Read SensorValues 5-28

Detect Object Collisions 5-31
Set Up Collision Detection 5-31
Use Collision Detection DatainModels 5-34
Use Collision Detectionin MATLAB 5-36
Use Collision Detection Data in Virtual Worlds 5-37

Virtual World DataTypes 5-40
Field Data Types vt n 5-40
Virtual World Data Class Types 5-42

Simulink 3D Animation Textures 5-45

Add Sound to a Virtual World 5-46

Use CAD Models with the Simulink 3D Animation Product .. 5-47
Use of CAD DeSignso iiin i e i 5-47
Import CAD Designsttt 5-47

Integrate the Imported Model Virtual World

Import STL and Physical Modeling XML Files
Results

Import VRML Models from CADTools
VRML Format Type 0.
Level of Detail Considerations
Units Used in Exported Files
Coordinate System Used
Assembly Hierarchy

Import VRML Models from CATIA Software
CATIA Coordinate Systems
Settings That Affect the VRML Output
Levelof Detail
VRML Export Filter Settings
VRML Models Exported from the CATIA Environment
Adjust the Resulting VRML Files

Modify the CAD Model Virtual World
Wrap Shape Objects with Transforms
AddDEF Namesccuiiiiin i
Additional Virtual World Modifications

Import Visual Representations of Robot Models
ImportaDAEFile
ImportaURDF File
Importan SDF File
Define Viewpoint to Make Imported Model Visible
Limitations

Link to Simulink and Simscape Multibody Models
Link the Virtual World to a Simulink Model
Initial Conditions
VR Placeholder and VR Signal Expander Blocks
Link to Simscape Multibody Models
Linktoa MATLABModel

5-48

5-49
5-49

5-51
5-51
5-52
5-52
5-53
5-54

5-60
5-60
5-61
5-61
5-61
5-62
5-66

5-69
5-69
5-69
5-70

5-72
5-72
5-74
5-75
5-78
5-78

5-80
5-80
5-82
5-83
5-83
5-84

ix

X

Contents

Using the 3D World Editor

6/

S3DWorld Editor
Supported Platforms
Use with Other Editors,
VRML and X3D Support i,
Nodes, Library Objects, and Templates
Open the 3D World Editor
3D World Editor Is the Default Editor
Open an Empty Virtual World
Open a Saved Virtual World
3D World Editor Panes
Preferences for 3D World Editor Startup
Createa Virtual World
Edita Virtual World
Add Objects
CopyandPasteaNode,
Edit Object Properties
Document a Virtual World Using Comments
Display Event Fields
Expand and Collapse Nodes
Highlight Nodes and Virtual World Objects
Wrap Nodes as Children of Another Node
Remove Nodes,
Save and Export Virtual World 3D Files
Edit VRML and X3D Scripts
Reduce Number of Polygons for Shapes
Virtual World Navigation in 3D World Editor
Specify Virtual World Rendering
Basic Navigation
Coordinate Axes Triad
ViewPanes
PivotPoint
3D World Editor Library
3D World Editor Library Objects

cncnc.ncncn
WINNNDN

A D

oo o

Add a Library Object
Guidelines for Using Custom Objects

Viewing Virtual Worlds

7

Virtual World Viewers
Host and Remote Viewing
Comparisonof Viewers

Simulink 3D Animation Viewer
What You Can Do with the Viewer
Viewer Uses MATLAB Figuresc.ovvi...
Set Viewer Appearance Preferences

Open the Simulink 3D Animation Viewer

Open from the VR

SinkBlock

Open from the Command Line

Simulate with the Simulink 3D Animation Viewer

Adjust Navigation

Settings i,

Specify Rendering Techniques

Turn Off Renderin

g for Performance

Navigate Using the Simulink 3D Animation Viewer

Basic Navigation
Navigation Panel

Viewer Keyboard Shortcuts

Mouse Navigation

Navigation Control Menu
Change the Navigation Speed

Sensors Effect on

Navigation

Display a Coordinate Axes Triad

Pivot Point

Set Viewpoints
Define Viewpoints
Reset Viewpoints

7-2

7-9

7-11

7-13
7-20

7-22
7-22
7-24
7-26
7-27
7-28
7-28
7-29
7-30
7-31

7-33

7-33
7-36

xi

Navigate Through Viewpoints 7-38

Record Offline Animations 7-42
Animation Recording 7-42
Recording Formats 7-42
File Namesoiiiiii i 7-43
Start and Stop Animation Recording 7-44
Play Animation Files 7-44
Record 3-D Animation Files 7-45
Record in Audio Video Interleave (AVI) Format 7-45
Schedule Files for Recording 7-48

Play Animations with Simulink 3D Animation Viewer 7-50

Configure Frame Capture Parameters 7-52

Capture Frames 7-54

Simulink 3D Animation Web Viewer 7-55

Open the Web Viewer 7-57
Set up for Remote Viewing 7-57
Connect the Web Viewer 7-57

Navigate Using the Web Viewer 7-59
Display and Navigation 7-59
Keyboard Shortcuts 7-59
Web Viewer Preferences, 7-60

Listen to Sound in a Virtual World 7-62
System RequirementsforSound 7-62
ListentoSound i 7-62

View a Virtual World in Stereoscopic Vision 7-64
Enable Stereoscopic Vision 7-64
Control Stereoscopic Effects 7-65

Active Stereoscopic Vision Configuration 7-67
Computer Platforms 7-67
Graphics Cards 0. 7-67
Display Devicest 7-67
Graphic Card Connection to Display Devices 7-68
Examples of Stereoscopic Vision Setups 7-68

xii Contents

Simulink 3D Animation Stand-Alone Viewer

8|

Orbisnap Viewer 8-2
What Is Orbisnap? 8-2
Install Orbisnap 8-4
Section OVerviewttt 8-4
System Requirements 8-4
Copying Orbisnap to Another Location 8-4
Adding Shortcuts or Symbolic Links 8-5
Start Orbisnap 8-6
Orbisnap Interface 8-8
MenuBar 8-9
Toolbar 8-10
NavigationPanel 8-10
Navigate Using Orbisnap 8-12
View Animations or Virtual Worlds with Orbisnap 8-16
View Virtual Worlds Remotely with Orbisnap 8-18

Blocks — Alphabetical List

9

Functions — Alphabetical List

10|

Glossary

xiii

Getting Started

* “Simulink 3D Animation Product Description” on page 1-2

» “Expected Background” on page 1-3

* “Workflow for Building and Using Virtual Worlds” on page 1-4

* “MATLAB Compiler Support” on page 1-10

e “X3D Support” on page 1-11

* “Virtual Reality Modeling Language (VRML)” on page 1-14

* “Virtual Reality World and Dynamic System Examples” on page 1-21

1 Getting Started

Simulink 3D Animation Product Description

1-2

Visualize dynamic system behavior in a virtual reality environment

Simulink 3D Animation provides apps for linking Simulink models and MATLAB®
algorithms to 3D graphics objects. Objects can be represented in the standard 3D
modeling languages X3D and VRML97. You can animate a 3D world by changing position,
rotation, scale, and other object properties during desktop or real-time simulation. You
can also sense collisions and other events in the virtual world and feed them back into
your MATLAB and Simulink algorithms. Video from virtual cameras can be streamed to
Simulink for processing.

Simulink 3D Animation includes editors and viewers for rendering and interacting with
virtual scenes. With the 3D World Editor, you can import CAD and URDF file formats as
well as author detailed scenes assembled from 3D objects. The 3D world can be viewed
immersively using stereoscopic vision. You can incorporate multiple 3D scene views inside
MATLAB figures, and interact with the virtual world using a force-feedback joystick,
space mouse, or other hardware device.

Key Features
* Simulink blocks and MATLAB apps and functions for connecting models to virtual
reality worlds

» Editors and viewers, including stereoscopic vision, for authoring and visualizing 3D
worlds

* Collision detection for modeling ultrasonic, lidar, and touch sensors

* 2D video streaming, animation recording, and playback

* Visualization of real-time simulations

» Interaction with 3D views via a joystick, space mouse, or other hardware device
* Import from STL, DAE COLLADA™, URDE, and SDF file formats

Expected Background

Expected Background

To help you effectively read and use this guide, here is a brief description of the chapters
and a suggested reading path. Generally, you can assume that Simulink 3D Animation
software on the Apple Mac OS X platform works as described for the UNIX®/Linux®
platforms.

The documentation assumes that you are already familiar with:

* MATLAB product, to write scripts and functions with MATLAB code, and to use
functions with the command-line interface

* Simulink and Stateflow charts products to create models as block diagrams and
simulate those models

* X3D or VRML, to create or otherwise provide virtual worlds or three-dimensional
scenes to connect to Simulink or MATLAB software

See Also

Related Examples
. “Workflow for Building and Using Virtual Worlds” on page 1-4

More About

. “Simulink 3D Animation Product Description” on page 1-2

1-3

1 Getting Started

Workflow for Building and Using Virtual Worlds

1-4

In this section...

“Virtual Reality World Models of Dynamic Systems” on page 1-4
“Set up Your Working Environment” on page 1-4

“Build a Virtual Reality World” on page 1-6

“Link to a Virtual Reality World” on page 1-7

“View Dynamic System Simulations” on page 1-8

“Share Dynamic System Simulation Visualizations” on page 1-8

Virtual Reality World Models of Dynamic Systems

The Simulink 3D Animation product is a solution for interacting with virtual reality world
models of dynamic systems over time. It extends the capabilities of your virtual world and
Simulink, Simscape Multibody, and MATLAB software into the world of virtual reality
graphics. The product provides a complete authoring, development, and working
environment for carrying out 3-D visual simulations.

To use virtual reality worlds to visualize dynamic system simulations, perform the
following tasks:

* “Set up Your Working Environment” on page 1-4

* “Build a Virtual Reality World” on page 1-6

* “Link to a Virtual Reality World” on page 1-7

* “View Dynamic System Simulations” on page 1-8

* “Share Dynamic System Simulation Visualizations” on page 1-8

As you refine your visualization, you often perform some of these tasks iteratively.

To work through an example that illustrates the building, linking, and viewing a virtual
world, see “Build and Connect a Virtual World” on page 5-9.

Set up Your Working Environment

Install the Simulink 3D Animation software in your MATLAB environment to build virtual
reality worlds and to visualize dynamic simulations modeled in MATLAB, Simulink, or

Workflow for Building and Using Virtual Worlds

Simscape Multibody. If your computer does not already have a graphics card with
hardware 3-D acceleration, consider installing such a card to enhance graphics
performance.

You build and view the virtual reality world models using VRML (Virtual Reality Modeling
Language) or X3D (Xtensible 3D).

In addition to the installed 3D World Editor (the default editor), you can configure your
environment to use:

* The Ligos® V-Realm Builder, which is included in the Simulink 3D Animation software
for Windows® platforms.

* Any third-party virtual world editor

* The MATLAB editor or a third-party text editor

In addition to the installed Simulink 3D Animation viewer (the default), you can use one of
these viewers to display your virtual reality worlds:

* Simulink 3D Animation Web Viewer

* Orbisnap, on a client computer

To help decide which 3D virtual world editor and viewer to use, see “Choose a Virtual
World Editor” on page 5-2 and “Virtual World Viewers” on page 7-2.

Use joystick and space mouse input devices to provide input for dynamic simulation
visualizations.

TCP/IP Connection

The Simulink 3D Animation product uses a TCP/IP connection to a virtual reality world
client for communicating with the Simulink 3D Animation Viewer, as well as connecting to
an HTML5-enabled web browser. You can verify the TCP/IP connection between the host
and client computers by using the ping command from a command-line prompt. If there
are problems, fix the TCP/IP protocol settings according to the documentation for your
operating system.

LD_LIBRARY_PATH Environment Variable for UNIX
If your system does not have the OpenGL® software properly installed when you run the

Simulink 3D Animation Viewer, you can see a MATLAB error message like the following:

1-5

1 Getting Started

1-6

Invalid MEX-file 'matlab/toolbox/s13d/s13d/vrsfunc.mexglx":
1libGL.so: cannot open shared object file

If you see an error like this, set the LD _LIBRARY PATH environment variable.

If the LD_LIBRARY_PATH environment variable already exists, use a line similar to this
code to add the new path to the existing one:

setenv LD LIBRARY PATH
matlabroot/sys/opengl/1ib/<PLATFORM>:$LD LIBRARY PATH

If the LD_LIBRARY_PATH environment variable does not already exist, use a line similar
to this code:

setenv LD LIBRARY PATH
matlabroot/sys/opengl/1lib/<PLATFORM>

In both cases, <PLATFORM> is the UNIX platform you are using.

Build a Virtual Reality World

Use the virtual world editor or other editor to build a virtual reality world. A non-VRML or
non-X3D CAD model created with another tool can be a good basis for a virtual reality
world to use with Simulink 3D Animation. You can convert some CAD models to a VRML
or X3D model.

You can use advanced features of the Simulink 3D Animation product such as:

* Viewpoints, to highlight points of interest for quick browsing of a virtual reality world
* Sensors, to input virtual reality world values to Simulink models

For an overview of VRML and details about supported VRML features, see “Virtual Reality
Modeling Language (VRML)” on page 1-14. You can also use X3D, which provides

several extensions, including additional nodes, fields, encoding, scene access interfaces,
additional rendering control, and geospatial support. For details, see “X3D Support” on
page 1-11.

As you add nodes with the 3D World Editor on page 6-2, you can use the viewer pane to
see the virtual world that you are creating.

For a step-by-step example of building a virtual reality world with the 3D World Editor,
see “Build and Connect a Virtual World” on page 5-9.

Workflow for Building and Using Virtual Worlds

Link to a Virtual Reality World

To use a dynamic system simulation to drive a virtual reality world, connect the virtual
world to one of these systems or objects:

* Simulink model
* Simscape Multibody model
* MATLAB virtual world object

Connect to Simulink Model

The Simulink 3D Animation library provides blocks to connect Simulink signals to virtual
worlds. This connection lets you visualize your model as a three-dimensional animation.
Simulink provides communication for control and manipulation of virtual reality objects,
using Simulink 3D Animation blocks. For details, see “Connect Virtual Worlds and
Models” on page 3-2.

After you include these blocks in a Simulink diagram, you can select a virtual world and
connect Simulink signals to the virtual world. The software automatically scans a virtual
world for available nodes that the Simulink software can drive.

All the node properties are listed in a hierarchical tree-style viewer. You select the
degrees of freedom to control from within the Simulink interface. After you close a Block
Parameters dialog box, the Simulink software updates the block with the inputs and
outputs corresponding to selected nodes in the virtual world. After connecting these
inputs to appropriate Simulink signals, you can view the simulation with a virtual world
viewer.

Connect to Simscape Multibody Model

You can use the Simulink 3D Animation product to view the behavior of a model created
with the Simscape Multibody software. First, build a model of a machine in the Simulink
interface using Simscape Multibody blocks. Then create a detailed picture of your
machine in a virtual world. Connect this world to the Simscape Multibody body sensor
outputs and view the behavior of the bodies in a virtual world viewer. For details, see
“Link to Simulink and Simscape Multibody Models” on page 5-80.

Connect to MATLAB Virtual World Object

Simulink 3D Animation software provides a flexible MATLAB interface to virtual reality
worlds. After creating MATLAB objects and associating them with a virtual world, you can

1-7

1 Getting Started

1-8

control the virtual world by using functions and methods. MATLAB provides
communication for control and manipulation of virtual reality objects using MATLAB
objects. For details about interacting between MATLAB and virtual reality worlds, see
“Interact with Virtual Reality Worlds”.

In MATLAB, you can set positions and properties of virtual world objects, create callbacks
from graphical interfaces, and map data to virtual world objects. You can also view the
virtual world with a viewer, determine its structure, and assign new values to all available
nodes and their fields.

The software includes functions for retrieving and changing the virtual world properties
and for saving the virtual world 3D files corresponding to the actual structure of a virtual
world.

View Dynamic System Simulations

After you connect the virtual world to the model, use a virtual world viewer to view the
virtual world representation of the dynamic system simulation.

* In Simulink and Simscape Multibody, simulate the model that is connected to the
virtual reality world.

+ In MATLAB, use the view function to view a vrworld object that the MATLAB code
updates with data values.

While running a simulation, you can change the positions and properties of virtual world
objects.

For information about using virtual world viewers to navigate a virtual reality world, see
“View Dynamic System Simulations”.

Share Dynamic System Simulation Visualizations

You can share dynamic system simulation results with others.

* Capture animation frame snapshots or record animations for video viewing. See
“Capture Frames” on page 7-54 and “Share Visualizations”.

» Use a client-server configuration. In addition to the single computer configuration
(when MATLAB, Simulink, and the virtual reality representations run on the same host
computer). In a client-server configuration, an Orbisnap viewer on a remote client can
connect to the server host on which Simulink 3D Animation software is running. This

See Also

configuration allows others to view an animated virtual world remotely. Multiple
clients can connect to one server. See “Orbisnap Viewer” on page 8-2.

* Use the MATLAB Compiler™ to take MATLAB files as input and generate
redistributable, standalone applications that include Simulink 3D Animation
functionality, including the Simulink 3D Animation Viewer. See “MATLAB Compiler
Support” on page 1-10

See Also

Functions
vredit | vrgetpref | vrjoystick |vrlib | vrsetpref | vrspacemouse

Blocks
VR Sink | VR Source

Related Examples
. “Virtual Reality World and Dynamic System Examples” on page 1-21
. “Build Virtual Reality Worlds”

1-9

1 Getting Started

MATLAB Compiler Support

To use the MATLAB Compiler to produce standalone applications, create a MATLAB file
that uses the MATLAB interface for the Simulink 3D Animation product (for example,

creating, opening, and closing a vrworld object). Then use the MATLAB Compiler
product.

Standalone applications that include Simulink 3D Animation functionality have the
following limitations:

No Simulink software support, which results in no access to the Simulink 3D
Animation Simulink library (vrlib).

No Simulink 3D Animation server, which results in no remote connection for the
Orbisnap viewer

No animation recording ability

No editing world ability

The following Simulink 3D Animation Viewer features cannot be used in standalone
applications:

+ File > Open in Editor

* Recording menu

* Simulation menu

* Help access

See Also

Related Examples

1-10

“Interact with Virtual Reality Worlds”
“MATLAB Compiler Support” on page 1-10

X3D Support

X3D Support

In this section...

“X3D” on page 1-11

“Relationship of X3D and VRML’ on page 1-11

“X3D Support in Simulink 3D Animation” on page 1-12
“Convert a VRML File to X3D Format” on page 1-12

X3D

The X3D (Xtensible 3D) ISO standard is an open standards file format and runtime
architecture for representing and communicating 3D scenes and objects. X3D has a rich
set of componentized features that you can customize. You can use X3D in applications
such as engineering and scientific visualization, CAD and architecture, medical
visualization, training and simulation, multimedia, entertainment, and education.

For information about supported X3D specification, see ISO/IEC 19775-1:2013. For
information about supported X3D encoding, see ISO/IEC 19776-1.3:201x and ISO/IEC
19776-2.3:201x.

Relationship of X3D and VRML

X3D is the successor of the VRML 97 standard (see “Virtual Reality Modeling Language
(VRML)” on page 1-14). X3D and VRML share many similar approaches, such as their
coordinate systems and the description of objects using nodes and their fields. X3D
provides several extensions, including additional nodes, fields, encoding, scene access
interfaces, additional rendering control, and geospatial support. VRML97 is still a widely
supported 3D format for tools and viewers, and is a direct subset of X3D. Many CAD tools
and 3D editors support import from and export to the X3D format.

Because many 3D virtual world tools and CAD tools have adopted X3D, Simulink 3D
Animation software provides both X3D and VRML support. VRML97 is the default virtual
world file format.

1-11

https://www.web3d.org/documents/specifications/19775-1/V3.3/
https://www.web3d.org/documents/specifications/19776-1/V3.3/index.html
https://www.web3d.org/documents/specifications/19776-2/V3.3/index.html
https://www.web3d.org/documents/specifications/19776-2/V3.3/index.html

1 Getting Started

1-12

X3D Support in Simulink 3D Animation

You can use XML encoded (.x3d files) and Classic VRML encoded (.x3dv files) X3D file
formats. X3D support is for versions from version 3.0 up to version 3.3. Support is for X3D
files that contain components that comply to the Immersive profile.

You can use Simulink blocks and MATLAB command-line interfaces to create and access
virtual worlds.

X3D Support Limitations

In the 3D World Editor, you can edit only VRML and VRML-compliant X3D files (files that
contain only X3D features that have VRML97 counterparts).

Simulink 3D Animation does not support X3D for Ligos V-Realm Builder.
The X3D support has these limitations:

* No support for binary-encoded files (.x3db).

* The Simulink 3D Animation Web Viewer supports only X3D files that contain nodes
complying to the HTML profile specified by the X3DOM developer community.

* You can use the st12vrml function to import CAD models in STL format (.st1 files)
to X3D format (.x3d or .x3dv files). However, other methods that Simulink 3D
Animation provides for converting CAD models do not support conversion to X3D
format.

* You cannot inline X3D files (.x3d or .x3dv).

* No support for the scene-access interface specified by ISO/IEC 19775-2:201x. To
access virtual worlds, use Simulink blocks or the MATLAB commands.

* LineProperties node support is limited to solid lines.
* The engine ignores UNIT and additional COMPONENT statements and elements.

* A PROTO node cannot have a VRML file (.wrl) that references an X3D file (. x3d
or .x3dv).

Convert a VRML File to X3D Format

You can save VRML (.wr1l) files as X3D format files. The conversion process determines
whether the X3D file is an . x3d or x3dyv file.

This example code converts a VRML file to X3D format:

See Also

w = vrworld('octavia scene.wrl');
open(w) ;

[)

% save to XML encoding
save(w, 'octavia scene.x3d');

% save to VRML syntax encoding
save(w, 'octavia scene.x3dv');

See Also

Related Examples

. “Use CAD Models with the Simulink 3D Animation Product” on page 5-47
. “Workflow for Building and Using Virtual Worlds” on page 1-4
. “Virtual Reality World and Dynamic System Examples” on page 1-21

More About
. “Virtual Reality Modeling Language (VRML)” on page 1-14
. “Expected Background” on page 1-3

1-13

1 Getting Started

Virtual Reality Modeling Language (VRML)

1-14

In this section...

“Relationship of VRML and X3D” on page 1-14
“VRML' on page 1-14

“VRML Support” on page 1-14

“VRML Compatibility” on page 1-15

“Virtual World Coordinate System” on page 1-16

“VRML File Format” on page 1-17

Relationship of VRML and X3D

The X3D (Xtensible 3D) interface is the successor to the VRML (Virtual Reality Modeling
Language) interface. The X3D interface supports VRML features. X3D also provides
several extensions to VRML.

For details, see “X3D Support” on page 1-11.

VRML

You can use the Virtual Reality Modeling Language (VRML) to display three-dimensional
objects in a VRML viewer. Simulink 3D Animation supports VRML97.

VRML provides an open and flexible platform for creating interactive three-dimensional
scenes (virtual worlds). Several VRML97-enabled browsers are available on several
platforms. Also, you can choose from several VRML authoring tools. In addition, graphical
software packages (CAD, visual art, and so on) offer VRML97 import/export features.

The Simulink 3D Animation product uses VRML97 technology for 3-D visualization.

VRML Support

The Virtual Reality Modeling Language (VRML) is an ISO standard that is open, text-
based, and uses a WWW-oriented format. You use VRML to define a virtual world that you
can display with a virtual world viewer and connect to a Simulink model.

The Simulink 3D Animation software uses many of the advanced features defined in the
current VRML97 specification. The standard is ISO/IEC 14772-1:1997, available from

Virtual Reality Modeling Language (VRML)

http://www.web3d.org/documents/specifications/14772/V2.0/partl/
javascript.html. This format includes a description of 3-D scenes, sounds, internal
actions, and WWW anchors.

The software analyzes the structure of the virtual world, determines what signals are
available, and makes them available from the MATLAB and Simulink environment.

Simulink 3D Animation software ensures that the changes made to a virtual world are
reflected in the MATLAB and Simulink interfaces. If you change the viewpoint in your
virtual world, this change occurs in the vrworld object properties in MATLAB and
Simulink interfaces.

The software includes functions for retrieving and changing virtual world properties.

Note Some VRML worlds are automatically generated in VRML1.0. However, the
Simulink 3D Animation product does not support VRML1.0. Save these worlds in the
current standard for VRML, VRML97.

For PC platforms, you can convert VRML1.0 worlds to VRML97 worlds by opening the
worlds in Ligos V-Realm Builder and saving them. V-Realm Builder is shipped with the PC
version of the software. Other commercially available software programs can also
perform the VRML1.0 to VRML97 conversion.

VRML Compatibility

The Simulink 3D Animation product currently supports most features of VRML97, with
the following limitations:

* The Simulink 3D Animation server ignores the VRML Script node, but it passes the
node to the VRML Viewer. Passing the node allows you to run VRML scripts on the
viewer side. You cannot run them on the Simulink 3D Animation server.

* In keeping with the VRML97 specification, the Simulink 3D Animation Viewer ignores
BMP files. As a result, VRML scene textures sometimes display improperly in the
Simulink 3D Animation Viewer. To display scene textures properly, replace all BMP
texture files in a VRML scene with PNG, JPG, or GIF equivalents.

For a complete list of VRML97 nodes, refer to the VRMLI7 specification.

1-15

http://www.web3d.org/documents/specifications/14772/V2.0/part1/javascript.html
http://www.web3d.org/documents/specifications/14772/V2.0/part1/javascript.html

1 Getting Started

1-16

Virtual World Coordinate System

Take coordinate systems into account when you want to:

» Display a virtual world object in a particular position.
* Move a virtual world.

* Export non-VRML models from CAD tools (including CATIA) and robot visual
representations (URDF files) to use with Simulink 3D Animation .

* Have a virtual world interact with MATLAB or Simulink.

z Y
Y, 2z
X X
Y z
MATLAB graphics coordinale sysiem VRML coordinale system

The VRML coordinate system is different from the MATLAB and Aerospace Blockset™
coordinate systems. VRML uses the world coordinate system: the y-axis points upward
and the z-axis places objects nearer or farther from the front of the screen. The larger the
z-axis value, the closer the object appears to the viewer. Understanding the coordinate
system is important when you interact with different coordinate systems. Simscape
Multibody uses the same coordinate system as VRML.

Here are some key VRML coordinate system concepts:

* Rotation angles — In VRML, rotation angles are defined using the right-hand rule.
Imagine your right hand holding an axis while your thumb points in the direction of
the axis toward its positive end. Your four remaining fingers point in a
counterclockwise direction. This counterclockwise direction is the positive rotation
angle of an object moving around that axis.

Virtual Reality Modeling Language (VRML)

* Child objects — In the hierarchical structure of a VRML file, specify the position and
orientation of child objects relative to the parent object. The parent object has its local
coordinate space defined by its own position and orientation. Moving the parent object
also moves the child objects relative to the parent object.

* Measurement units — All lengths and distances are measured in meters, and all angles
are measured in radians.

Simulink 3D Animation provides a set of functions that can help you convert between
different representations of orientation in space. An example of a coordinate conversion
function is vrrotmat2vec, which converts a rotation from a matrix to an axis-angle
representation.

For an example of using global coordinates in a Simulink 3D Animation model, see
“Manipulator Moving a Load with Use of Global Coordinates”.

VRML File Format

You need not have any substantial knowledge of the VRML format to use the VRML
authoring tools to create virtual worlds. However, a basic knowledge of VRML scene
description helps you create virtual worlds more effectively. A basic knowledge also gives
you a good understanding of how you can control the virtual world elements using
Simulink 3D Animation software.

For more information, see the VRML97 Reference at https://www.web3d.org. Many
specialized VRML books can help you understand VRML concepts and create your own

1-17

https://www.web3d.org

1 Getting Started

1-18

virtual worlds. For more information about the VRML, refer to an appropriate third-party
VRML book.

VRML uses a hierarchical tree structure of objects (nodes) to describe a 3-D scene. Every
node in the tree represents some functionality of the scene. There are many different
types of nodes. Some of them are shape nodes (representing real 3-D objects), and some
of them are grouping nodes used for holding child nodes. Here are some example nodes:

* Box — Represents a box in a scene.

* Transform — Defines position, scale, scale orientation, rotation, translation, and
children of its subtree (grouping node).

* Material — Corresponds to material in a scene.
* DirectionallLight— Represents lighting in a scene.
* Fog — Allows you to modify the environment optical properties.

* ProximitySensor — Brings interactivity to VRML97. This node generates events
when you enter, exit, and move within the defined region in space.

Each node contains a list of fields that hold values defining parameters for its function.

Nodes can be placed in the top level of a tree or as children of other nodes in the tree
hierarchy. When you change a value in the field of a certain node, all nodes in its subtree
are affected. This feature allows you to define relative positions inside complicated
compound objects.

You can mark every node with a specific name by using the keyword DEF in the VRML
scene code. For example, the statement DEF MyNodeName Box sets the name for this
box node to MyNodeName. You can access the fields of only those nodes that you name in
a virtual world.

In the following example of a simple VRML file, two graphical objects are modeled in a 3-
D scene. A flat box with a red ball above it represents the floor. The VRML file is a
readable text file that you can write in any text editor.

#VRML V2.0 utf8
This is a comment line
WorldInfo {
title "Bouncing Ball"
}
Viewpoint {
position 0 5 30
description "Side View"

Virtual Reality Modeling Language (VRML)

}
DEF Floor Box {
size 6 0.2 6

}

DEF Ball Transform {
translation 010 0
children Shape {

appearance Appearance {
material Material {
diffuseColor 1 0 0
}

}
geometry Sphere {

}
}
}

The first line is the VRML header line. Every VRML file must start with this header line. It
indicates that the file is a VRML 2 file and that the text objects in the file are encoded
according to the UTF8 standard. You use the number sign (#) to comment VRML worlds.
A VRML viewer ignores everything on a line after the # sign is ignored, except for the
first header line.

Most of the box properties are left at their default values - distance from the center of the
coordinate system, material, color, and so on. Only the name Floor and the dimensions
are assigned to the box. To be able to control the position and other properties of the ball,
it is defined as a child node of a Transform type node. Here, the default unit sphere is
assigned a red color and a position 10 m above the floor. In addition, the virtual world
title is used by VRML viewers to distinguish between virtual worlds. A suitable initial
viewpoint is defined in the virtual world VRML file.

When displayed in a VRML viewer, you see the floor and red ball.

1-19

1 Getting Started

1-20

=

See Also

Related Examples

. “Workflow for Building and Using Virtual Worlds” on page 1-4

. “Virtual Reality World and Dynamic System Examples” on page 1-21
. “Add Sensors to Virtual Worlds” on page 5-26

More About

. “X3D Support” on page 1-11
. “Expected Background” on page 1-3

Virtual Reality World and Dynamic System Examples

Virtual Reality World and Dynamic System Examples

In this section...

“Simulink Interface Examples” on page 1-21
“MATLAB Interface Examples” on page 1-33

Simulink Interface Examples

For all the examples that have a Simulink model, use the following procedure to run the
example and view the model:

1

In the MATLAB Command Window, enter the name of a Simulink model. For example,
enter:

vrbounce

A Simulink window opens with the block diagram for the model. By default, a virtual
world also opens in the Simulink 3D Animation Viewer or your HTML5-enabled web
browser. If you close the virtual world window, double-click the VR Sink block to
display it again.

Note If the viewer does not open, double-click the VR Sink block in the Simulink
model. In the Simulink 3D Animation Viewer, from the Simulation menu, click
Block Parameters. A Block Parameters dialog box opens. The Open viewer
automatically check box should be selected by default. When you double-click the
VR Sink block, this selection enables the virtual world window to open.

In the Simulink window, from the Simulation menu, click Run. (Alternatively, in the
Simulink 3D Animation Viewer, from the Simulation menu, click Start.)

A simulation starts running, and the virtual world is animated using signal data from
the simulation.

The following table lists the Simulink examples provided with the Simulink 3D Animation
product. Descriptions of the examples follow the table.

1-21

1 Getting Started

Example Simulink VR VR Joystick [Space
Coder™ Ready [Sink |Source Mouse

vrbounce X X

vrcrane joystick X X

vrcrane panel X X

vrcrane traj X X

vrlights X X

vrmaglev X X

vrmaglev_sldrt X X

vrmanipul X X

vrmanipul global X X

vrmembl X X

vrmorph X X

vr octavia X X

vr_octavia 2cars X

vr_octavia graphs X

vr _octavia mirror X

vr octavia video X

vrdemo_panel X X

vrpend X X

vrplanets X X

vrtkoff X X

vrtkoff trace X

vrtkoff hud X

vrcollisions X X

vrcollisions lidar X X

vrmaze X X

1-22

Virtual Reality World and Dynamic System Examples

Bouncing Ball Example (vrbounce)

The vrbounce example represents a ball bouncing from a floor. The ball deforms as it
hits the floor, keeping the volume of the ball constant. The deformation is achieved by
modifying the scale field of the ball.

Portal Crane with Joystick Control (vrcrane_joystick)

The vrcrane_joystick example illustrates how a Simulink model can interact with a
virtual world. The portal crane dynamics are modeled in the Simulink interface and
visualized in virtual reality. The model uses the Joystick Input block to control the
setpoint. Joystick 3 axes control the setpoint position and button 1 starts the crane. This
example requires a standard joystick with at least three independent axes connected to
the PC.

To minimize the number of signals transferred between the Simulink model and the
virtual reality world, and to keep the model as simple and flexible as possible, only the
minimum set of moving objects properties are sent from the model to the VR Sink block.
All other values that are necessary to describe the virtual reality objects movement are
computed from this minimum set using VRMLScript in the associated virtual world 3D
file.

For details on how the crane model hierarchy and scripting logic is implemented, see the
associated commented virtual world 3D file portal crane.wrl.

Virtual Control Panel (vrdemo_panel)

The vrdemo_panel example shows the use of sensing objects that are available in the 3D
World Editor Components library. These objects combine virtual world sensors with logic
that changes their visual appearance based on user input. The sensor values can be read
into Simulink by the VR Source block. The logic is implemented using VRML Scripts and
Routes.

The control panel contains a pushbutton, switch button, toggle switch, and a 2-D setpoint
selection area. Outputs of these elements are read into a Simulink model and
subsequently displayed using standard sinks, or used as inputs of blocks that control back
some objects in the virtual world.

Pushbutton, switch button, and toggle switches have the state outputs, which are of
boolean type. Their values are displayed using the Scope.

Two outputs of the 2D setpoint area are used to achieve the following behavior. The value
of the "SetPoint Changed" eventOut is continuously updated when the pointer is over the

1-23

1 Getting Started

1-24

sensor area. This value is triggered by the second output - "isActive" that is true only on
clicking the pointer button. Triggered value - coordinates of the active point on the sensor
plane are displayed using the XY Graph and sent back to the virtual world in two ways: as
a position of green cone marker and as text that the VR Text Output block displays on the
control panel.

Portal Crane with Predefined Trajectory Example (vrcrane_traj)

The vrcrane_traj example is based on the vrcrane joystick example, but instead of
interactive control, it has a predefined load trajectory. The vrcrane traj model
illustrates a technique to create the visual impression of joining and splitting moving
objects in the virtual world.

A crane magnet attaches the load box, moves it to a different location, then releases the
box and returns to the initial position. This effect is achieved using an additional,
geometrically identical shadow object that is placed as an independent object outside of
the crane objects hierarchy. At any given time, only one of the Load or Shadow objects is
displayed, using two Switch nodes connected by the ROUTE statement.

After the crane moves the load to a new position, at the time of the load release, a
VRMLScript script assigns the new shadow object position according to the current Load
position. The Shadow object becomes visible. Because it is independent from the rest of
the crane moving parts hierarchy, it stays at its position as the crane moves away.

Lighting Example (vrlights)

The vrlights example uses light sources. In the scene, you can move Sun (modeled as
DirectionallLight) and Lamp (modeled as PointLight) objects around the Simulink
model. This movement creates the illusion of changes between day and night, and night
terrain illumination. The associated virtual world 3D file defines several viewpoints that
allow you to observe gradual changes in light from various perspectives.

Magnetic Levitation Model Example (vrmaglev)

The vrmaglev example shows the interaction between dynamic models in the Simulink
environment and virtual worlds. The Simulink model represents the HUMUSOFT® CE 152
Magnetic Levitation educational/presentation scale model. The plant model is controlled
by a PID controller with feed-forward to cope with the nonlinearity of the magnetic
levitation system. To more easily observe and control the ball, set the virtual world viewer
to the Camera 3 viewpoint.

You can set the ball position setpoint in two ways:

Virtual Reality World and Dynamic System Examples

» Using a Signal Generator block
* Clicking in the virtual reality scene at a position that you want

To achieve a dragging effect, use the PlaneSensor attached to the ball geometry with its
output restricted to <0,1> in the vertical coordinate and processed by the VR Sensor
Reader block. The vrextin S-function provides the data connection.

For more details on how to read values from virtual worlds programmatically, see “Add
Sensors to Virtual Worlds” on page 5-26.

Magnetic Levitation Model for Simulink Desktop Real-Time Example
(vrmaglev_sldrt)

In addition to the vrmaglev example, the vrmaglev_sldrt example works directly with
the actual CE 152 scale model hardware in real time. This model to work with the
HUMUSOFT MF 624 data acquisition board, and Simulink Coder and Simulink Desktop
Real-Time™ software. However, you can adapt this model for other targets and
acquisition boards. A digital IIR filter, from the DSP System Toolbox™ library, filters the
physical system output. You can bypass the physical system by using the built-in plant
model. Running this model in real time is an example showing the capabilities of the
Simulink product in control systems design and rapid prototyping.

After enabling the remote view in the VR Sink block dialog box, you can control the
Simulink model even from another (remote) client computer. This control can be useful
for distributing the computing power between a real-time Simulink model running on one
machine and the rendering of a virtual reality world on another machine.

To work with this model, use as powerful a machine as possible or split the computing
and rendering over two machines.

Manipulator with Space Mouse Example (vrmanipul)

The vrmanipul example illustrates the use of Simulink 3D Animation software for virtual
reality prototyping and testing the viability of designs before the implementation phase.
Also, this example illustrates the use of a space mouse input for manipulating objects in a
virtual world. You must have a space mouse input to run this example.

1-25

1 Getting Started

1-26

The virtual reality model represents a nuclear hot chamber manipulator. It is manipulated
by a simple Simulink model containing the Space Mouse Input block. This model uses all
six degrees of freedom of the space mouse for manipulating the mechanical arm, and uses
mouse button 1 to close the grip of the manipulator jaws.

A space mouse is an input device with six degrees of freedom. It is useful for navigating
and manipulating objects in a virtual world. A space mouse is also suitable as a general
input device for Simulink models. You can use a space mouse for higher performance
applications and user comfort. Space mouse input is supported through the Space Mouse
Input block, which is included in the Simulink 3D Animation block library for the Simulink
environment.

The Space Mouse Input block can operate in three modes to cover the most typical uses
of such a device in a three-dimensional context:

* Speeds
* Positions
* Viewpoint coordinates

Manipulator Moving a Load with Use of Global Coordinates (vrmanipul_global)

The vrmanipul global example illustrates the use of global coordinates in Simulink 3D
Animation models. You can use global coordinates in a model in many ways, including:

* Object tracking and manipulation

matlab:showdemo('vrmanipul_global')

Virtual Reality World and Dynamic System Examples

» Simple collision detection
* Simulation of haptic effects

The VR Source block supports using global coordinates for objects in a virtual world. For
each Transform in the scene, the tree view in the VR Source block parameter dialog box
displays the Extensions branch. In that branch, you can select translation abs and
rotation_ abs fields. Fields with the abs suffix contain the object's global coordinates.
The fields without the abs suffix input their data into Simulink model object's local
coordinates (relative to their parent objects in model hierarchy).

The virtual reality model represents a nuclear hot chamber manipulator. The manipulator
moves the load from one gray cylindrical platform to another. The trajectory for the
manipulator end-effector is predefined using the Signal Builder. Each part of manipulator
arm is independently actuated using decomposed trajectory components, with the help of
VR Expander blocks (see the VR Transformations subsystem).

The VR Source block in the virtual scene tree on the left captures global coordinates of all
objects important for load manipulation:

* Manipulator grip reference point (center of the clamp)

* Destination reference point

* [Initial position of the load

The manipulator grip position results from complex movement of manipulator arm parts
that form hierarchical structure. Generally it is very difficult to compute global
coordinates for such objects affected by hierarchical relations in the scene. However,

Simulink 3D Animation provides an easy way to read the global coordinates of objects
affected by hierarchical relations into a Simulink model.

Based on having the global coordinates of all of the important objects, you can implement
a simple manipulator control logic.

Rotating Membrane Example (vrmembl)

The vrmemb1 example is similar to the vrmemb example, but in the vrmembl example the
associated virtual world is driven from a Simulink model.

Geometry Morphing Example (vrmorph)

The vrmorph example illustrates how you can transfer matrix-type or variable-size signal
data between the Simulink interface and a virtual reality world. With this capability, you

1-27

1 Getting Started

1-28

can perform massive color changes or morphing. This model morphs a cube into an
octahedron and then changes it back to a cube.

Vehicle Dynamics Visualization (vr_octavia)

The vr_octavia example illustrates the benefits of the visualization of complex dynamic
model in the virtual reality environment. It also shows the Simulink 3D Animation 3-D
offline animation recording functionality.

Vehicle Dynamics Visualization - Simulation of Multiple Objects
(vr_octavia_2cars)

This example extends the vr octavia example to show multiple-object scenario
visualizations.

The precomputed simulation data represents a standard double-lane-change maneuver
conducted in two-vehicle configurations. One configuration engages the Electronic
Stability Program control unit. The other configuration switches that control unit off. The
example sends two sets of vehicle dynamics data in parallel to the virtual reality scene, to
drive two different vehicles.

Models of the vehicles use the EXTERNPROTO mechanism. In the main virtual world
associated with the VR Sink block, you can create several identical vehicles as instances
of a common 3-D object. This approach greatly simplifies virtual world authoring. For
instance, it is very easy to create a third vehicle to simultaneously visualize another
simulation scenario. The octavia scene lchg 2cars.wrl virtual world, the code
after the definition of PROTOS illustrates an approach for easy-to-define reusable objects.

In addition to vehicle properties controlled in the vr octavia example, vehicle
prototypes also allow you to define vehicle color and scale. These properties distinguish
individual car instances (color) and avoid unpleasant visual interaction of two nearly-
aligned 3-D objects (scale). Scaling one of the cars by a small amount, encompasses one
car into another so that their faces do not clip randomly, based on the current simulation
data in each simulation step.

To visualize vehicles side-by-side, add an offset to the position of one vehicle.
Vehicle Dynamics Visualization with Graphs (vr_octavia_graphs)

The vr_octavia graphs example extends the vr_octavia example by showing how to
combine a virtual reality canvas in one figure with other graphical user interface objects.

Virtual Reality World and Dynamic System Examples

In this case, the virtual world displays three graphs that update at each major simulation
time step.

Vehicle Dynamics Visualization with Live Rear Mirror Image (vr_octavia_mirror)

The vr_octavia mirror example extends the vr octavia example by showing the
capability of the VR Sink block to process video stream on input. In the virtual world, a
PixelTexture texture map is defined at the point of the vehicle left rear mirror. The
example places a 2-D image from a viewpoint at the same position (looking backward).
That image is looped back into the same virtual world and projected on the rear mirror
glass, creating the impression of a live reflection. Texture images can have different
formats (corresponding to the available SFImage definitions according to the VRML97
standard). This example uses an RGB image that has the same format as the output from
the VR to Video block. In the virtual world 3D file associated with the scene, you can
define only a trivial texture (in this case, a 4x4 pixel checkerboard) that gets resized
during simulation, according to the current size of the signal on the input. See the Plane
Manipulation Using Space Mouse MATLAB Object example.

Vehicle Dynamics Visualization with Video Output Example (vr_octavia_video)

The vr_octavia_ video example illustrates how to use video output from the VR To
Video block. This model performs simple operations on the video output. It requires the
Computer Vision System Toolbox™ product.

Inverted Pendulum Example (vrpend)

The vrpend example illustrates the various ways a dynamic model in the Simulink
interface can interact with a virtual reality scene. It is the model of a two-dimensional
inverted pendulum controlled by a PID controller. What distinguishes this model from
common inverted pendulum models are the methods for setting the set point. You
visualize and interact with a virtual world by using a Trajectory Graph and VR Sink
blocks. The Trajectory Graph block allows you to track the history of the pendulum
position and change the set point in three ways:

* Mouse — Click and drag a mouse pointer in the Trajectory Graph two-dimensional
window

* Input Signal — External Trajectory Graph input in this model (driven by a random
number generator)

* VR Sensor — Activates the input from a VRML TouchSensor

1-29

1 Getting Started

1-30

When the pointing device in the virtual world viewer moves over an active TouchSensor
area, the cursor shape changes. The triggering logic in this model is set to apply the new
set point value with a left mouse button click.

Notice the pseudoorthographic view defined in the associated virtual world 3D file. You
achieve this effect by creating a viewpoint that is located far from the object of interest
with a very narrow view defined by the FieldOfView parameter. An orthographic view is
useful for eliminating the panoramic distortion that occurs when you are using a wide-
angle lens. The disadvantage of this technique is that locating the viewpoint at a distance
makes the standard viewer navigation tricky or difficult in some navigation modes, such
as the Examine mode. If you want to navigate around the virtual pendulum bench, you
should use some other viewpoint.

Solar System Example (vrplanets)

The vrplanets example shows the dynamic representation of the first four planets of
the solar system, Moon orbiting around Earth, and Sun itself. The model uses the real
properties of the celestial bodies. Only the relative planet sizes and the distance between
the Earth and the Moon are adjusted, to provide an interesting view.

Several viewpoints are defined in the virtual world, both static and attached to an
observer on Earth. You can see that the planet bodies are not represented as perfect
spheres. Using the Sphere graphic primitive, which is rendered this way, simplified the
model. If you want to make the planets more realistic, you could use the more complex
IndexedFaceSet node type.

Mutual gravity accelerations of the bodies are computed using Simulink matrix-type data
support.

Plane Takeoff Example (vrtkoff)

The vrtkoff example represents a simplified aircraft taking off from a runway. Several
viewpoints are defined in this model, both static and attached to the plane, allowing you
to see the takeoff from various perspectives.

The model shows the technique of combining several objects imported or obtained from
different sources (CAD packages, general 3-D modelers, and so on) into a virtual reality
scene. Usually it is necessary for you to wrap such imported objects with an additional
Transform node. This wrapper allows you to set appropriately the scaling, position, and
orientation of the objects to fit in the scene. In this example, the aircraft model from the
Ligos V-Realm Builder Object Library is incorporated into the scene. The file
vrtkoff2.wrl uses the same scene with a different type of aircraft.

Virtual Reality World and Dynamic System Examples

Plane Take-Off with Trajectory Tracing Example (vrtkoff trace)

The vrtkoff_ trace is a variant of the vrtkoff example that illustrates how to trace
the trajectory of a moving object (plane) in a scene. It uses a VR Tracer block. Using a
predefined sample time, this block allows you to place markers at the current position of
an object. When the simulation stops, the markers indicate the trajectory path of the
object. This example uses an octahedron as a marker.

Plane Take-Off with HUD Text Example (vrtkoff_hud)

The vrtkoff hud example illustrates how to display signal values as text in the virtual
world and a simple Head-Up Display (HUD). It is a variant of the vrtkoff example.

The example sends the text to a virtual world using the VR Text Output block. This block
formats the input vector using the format string defined in its mask (see sprintf for
more information) and sends the resulting string to the 'string' field of the associated
Text node in the scene.

The example achieves HUD behavior (maintaining constant relative position between the
user and the Text node) by defining a ProximitySensor. This sensor senses user
position and orientation as it navigates through the scene and routes this information to
the translation and rotation of the HUD object (in this case, a Transform that contains
the Text node).

Collision Detection Using Line Sensor (vrcollisions)
The vrcollisions example shows a simple way how to implement collision detection.

In the virtual world, an X3D LinePickSensor is defined. This sensor detects
approximate collisions of several rays (modeled as IndexedLineSet) with arbitrary
geometries in the scene. For geometric primitives, exact collisions are detected. One of
LinePickSensor output fields is the\\ field, which becomes TRUE as soon as the collision
between any of the rays and surrounding scene objects is detected.

The robot is inside a room with several obstacles. During the simulation, the robot moves
forward as long as its sensor does not bounce into a wall or an obstacle. Use the Left and
Right buttons to turn the robot so that there is a free path ahead, and the robot starts
moving again.

The model defines both VR Sink and VR Source blocks, associated with the same virtual
scene. The VR Source reads the sensor isActive signal and the current position of the
robot. The VR Sink block sets the robot position, rotation, and color.

1-31

1 Getting Started

1-32

In the virtual world, there are two viewpoints defined - one static and one attached to the
robot.

Differential Wheeled Robot with Lidar Sensor (vrcollisions_lidar)

The vrcollisions lidar example shows how a LinePickSensor can be used to
model lidar sensor behavior in Simulink 3D Animation.

In a simple virtual world, a wheeled robot with a lidar sensor mounted on its top is
defined. This lidar sensor is implemented using the LinePickSensor that detects
collisions of several rays (modeled as IndexedLineSet) with surrounding scene objects.
Sensor pickedRange and pickedPoint fields are used in this model for visualization
purposes only, but together with robot pose information they can be used for
Simultaneous Localization and Mapping (SLAM) and other similar purposes.

The sensor sensing lines are visible, shown as transparent green lines. There are 51
sensing rays evenly spaced in the horizontal plane between -90 and 90 degrees. lidar
range is 10 meters.

In order to visualize the lidar sensor output, there is a visualization proxy LineSet
defined with lines identical to lines defined as the LinePickSensor sensing geometry.
Visualization lines are blue. Combination of pickedPoint and pickedRange
LinePickSensor outputs is used to visualize points of collision. The pickedPoint
output contains coordinates of points that collided with surrounding objects. This output
has variable size depending on how many sensor rays collided. The pickedRange output
size is fixed, equal to the number of sensing rays. The output returns distance from lidar
sensor origin to collision point for each sensing line. For rays that don't collide, this
output returns -1. The pickedRange is used to determine the indices of lines for which
the collision points are returned in the pickedPoint sensor output. In effect, the blue
lines are shortened so that only the line segment between the ray fan origin and point of
collision is displayed for each line.

Robot trajectory is modeled in a trivial way using the Signal Builder and the Ramp blocks.
In the Signal Builder, a simple 1x1 meter square trajectory is defined for the first 40
seconds of simulation. After returning to its original position, the robot only rotates
indefinitely.

In the model, there are both VR Sink and VR Source blocks defined, associated with the
same virtual world. The VR Source is used to read the sensor signals. The VR Sink is used
to set the Robot position / rotation and the coordinates of endpoints of the sensor visual
proxy lines.

Virtual Reality World and Dynamic System Examples

In the virtual world, there are several viewpoints defined, both static and attached to the
robot, allowing to observe lidar visualization from different perspectives.

Differential Wheeled Robot in a Maze (vrmaze)

The vrmaze example shows how you can use collision detection to simulate a differential
wheeled robot that solves a maze challenge. The robot control algorithm uses information
from virtual ultrasonic sensors that sense distance to surrounding objects.

A simple differential wheeled robot is equipped with two virtual ultrasonic sensors.One of
the sensors looks ahead, and the other is directed to the left of the robot. Sensors are
simplified, their active range is represented by green lines. The sensors are implemented
as X3D LinePickSensor nodes. These sensors detect approximate collisions of rays
(modeled as IndexedLineSet) with arbitrary geometries in the scene. For geometric
primitives, exact collisions are detected. One of the LinePickSensor output fields is the
isActive field, which becomes TRUE as soon as the collision between its ray and
surrounding scene objects is detected. When activated, the sensor lines change their
color from green to red using the script written directly in the virtual world.

In the model, there are both VR Sink and VR Source blocks defined, associated with the
same virtual scene. The VR Source reads the sensors isActive signals. The VR Sink sets
the robot position and rotation in the virtual world.

The robot control algorithm is implemented using a Stateflow® chart.

MATLAB Interface Examples

The following table lists the MATLAB interface examples provided with the software.
Descriptions of the examples follow the table. MATLAB interface examples display virtual
worlds in your default viewer. If your default is the Simulink 3D Animation Viewer, some
buttons are unavailable. In particular, the simulation buttons for simulation and recording
are unavailable.

Example Moving Morphing |Text |Recording vrml() Space
Objects Objects Function |[Mouse
Use
vrcar X
vrheat X X
vrheat anim X X X

1-33

1 Getting Started

Example Moving Morphing |Text |Recording vrml() Space
Objects Objects Function |[Mouse
Use
vrmemb X X X
vrterrain simple X
vrtkoff spacemouse X X

1-34

Car in the Mountains Example (vrcar)

This example illustrates the use of the Simulink 3D Animation product with the MATLAB
interface. In a step-by-step tutorial, it shows commands for navigating a virtual car along
a path through the mountains.

1 Inthe MATLAB Command Window, type

vrcar
2 A tutorial script starts running. Follow the instructions in the MATLAB Command
Window.

Heat Transfer Example (vrheat)

This example illustrates the use of the Simulink 3D Animation product with the MATLAB
interface for manipulating complex objects.

In this example, matrix-type data is transferred between the MATLAB software and a
virtual reality world. Using this feature, you can achieve massive color changes or
morphing. This is useful for representing various physical processes. Precalculated data
of time-based temperature distribution in an L-shaped metal block is used. The data is
then sent to the virtual world. This forms an animation with relatively large changes.

This is a step-by-step example. Shown are the following features:

* Reshaping the object

* Applying the color palette to represent distributed parameters across an object shape
* Working with VRML or X3D text objects

* Animating a scene using the MATLAB interface

* Synchronization of multiple scene properties

Virtual Reality World and Dynamic System Examples

At the end of this example, you can preserve the virtual world object in the MATLAB
workspace, then save the resulting scene to a corresponding virtual world 3D file or carry
out other subsequent operations on it.

Heat Transfer Visualization with 2-D Animation (vrheat_anim)

This example illustrates the use of the Simulink 3D Animation C interface to create 2-D
offline animation files.

You can control the offline animation recording mechanism by setting the relevant
vrworld and vrfigure object properties. You should use the Simulink 3D Animation
Viewer to record animations. However, direct control of the recording is also possible.

This example uses the heat distribution data from the vrheat example to create an
animation file. You can later distribute this animation file to be independently viewed by
others. For this kind of visualization, where the static geometry represented by an
IndexedFaceSet node is colored based on the simulation of some physical phenomenon,
it is suitable to create 2-D .avi animation files. The software uses a MATLAB
VideoWriter object to record 2-D animation exactly as it appears in the viewer figure.

There are several methods you can use to record animations. In this example, we use the
scheduled recording. When scheduled recording is active, a time frame is recorded into
the animation file with each setting of the virtual world Time property. Recording is
completed when you set the scene time at the end or outside the predefined recording
interval.

When using the Simulink 3D Animation MATLAB interface, you set the scene time as
desired. This is typically from the point of view of the simulated phenomenon equidistant
times. This is the most important difference from recording the animations for virtual
worlds that are associated with Simulink models, where scene time corresponds directly
to the Simulink time.

The scene time can represent any independent quantity along which you want to animate
the computed solution.

This is a step-by-step example. Shown are the following features:

* Recording 2-D offline animations using the MATLAB interface
* Applying the color palette to visualize distributed parameters across an object shape
* Animating a scene

1-35

1 Getting Started

1-36

* Playing the created 2-D animation file using the system AVI player

At the end of this example, the resulting file vrheat anim.avi remains in the working
folder for later use.

Rotating Membrane with MATLAB Graphical Interface Example (vrmemb)

The vrmemb example shows how to use a 3-D graphic object generated from the MATLAB
environment with the Simulink 3D Animation product. The membrane was generated by
the Logo function and saved in the VRML format using the standard vrml function. You
can save all Handle Graphics® objects this way and use them with the Simulink 3D
Animation software as components of associated virtual worlds.

After starting the example, you see a control panel with two sliders and three check
boxes. Use the sliders to rotate and zoom the membrane while you use the check boxes to
determine the axis to rotate around.

In the virtual scene, notice the text object. It is a child of the Billboard node. You can
configure this node so that its local z-axis turns to point to the viewer at all times. This
can be useful for modeling virtual control panels and head-up displays (HUDs).

Terrain Visualization Example (vrterrain_simple)

This example illustrates converting available Digital Elevation Models into the VRML
format, for use in virtual reality scenes.

As a source of terrain data, the South San Francisco DEM model (included in the
Mapping Toolbox™ software) has been used. A simple Boeing® 747® model is included in
the scene to show the technique of creating virtual worlds from several sources on-the-fly.
This example requires the Mapping Toolbox software from MathWorks®.

Plane Manipulation Using Space Mouse MATLAB Object

This example illustrates how to use a space mouse using the MATLAB interface. After you
start this example, a virtual world with an aircraft is displayed in the Simulink 3D
Animation Viewer. You can navigate the plane in the scene using a space mouse input

device. Press button 1 to place a marker at the current plane position.

This example requires a space mouse or compatible device.

See Also

See Also

Related Examples
. “Link to Models”

1-37

Installation

The Simulink 3D Animation product provides the files you need for installation on both

your host computer and client computer.

“Set the Default Viewer” on page 2-2

“Set Simulink 3D Animation Preferences” on page 2-6
“Install V-Realm Editor” on page 2-18

“Test the Viewer Installation” on page 2-21

2 Installation

Set the Default Viewer

If you have an HTML5-enabled web browser, you can view virtual worlds with either the
default Simulink 3D Animation Viewer or your web browser. You determine the viewer for

displaying your scene using the vrsetpref and vrgetpref commands.

This procedure assumes that you are working with a PC platform.

1 When you install Simulink 3D Animation, the Simulink 3D Animation viewer is the
default viewer. If you are not sure whether the default has been changed, you can

determine your default viewer by typing:
vrgetpref
The MATLAB Command Window displays

ans =

DataTypeBool:

DataTypeInt32:

DataTypeFloat:
DefaultCanvasNavPanel:
DefaultCanvasUnits:
DefaultEditorPosition:
DefaultEditorTriad:
DefaultFigureAntialiasing:
DefaultFigureCaptureFileFormat:
DefaultFigureCaptureFileName:
DefaultFigureDeleteFcn:
DefaultFigureLighting:
DefaultFigureMaxTextureSize:
DefaultFigureNavPanel:
DefaultFigureNavZones:
DefaultFigurePosition:
DefaultFigureRecord2DCompressMethod:
DefaultFigureRecord2DCompressQuality:
DefaultFigureRecord2DFileName:
DefaultFigureRecord2DFPS:
DefaultFigureStatusBar:
DefaultFigureTextures:
DefaultFigureToolBar:
DefaultFigureTooltips:
DefaultFigureTransparency:
DefaultFigureTriad:

2-2

'logical’
"double’

"double’

'opaque’
'normalized’

[822 123 661 703]
'bottomleft’

‘on'

"tif!

'%f anim S%n.tif'

on
"auto'’

"halfbar'

'off!

[5 92 576 380]
‘auto’

75

'%f anim %n.avi'
15
‘on
on
on
on
on
‘none’

Set the Default Viewer

The DefaultViewer propertyis set to 'internal’.

DefaultFigureWireframe:
DefaultViewer:
DefaultWorldRecord3DFileName:
DefaultWorldRecordMode:
DefaultWorldRecordInterval:
DefaultWorldRemoteView:
DefaultWorldTimeSource:
Editor:
EditorPreservelLayout:
EditorSavePosition:
HttpPort:

TransportBuffer:
TransportTimeout:

VrPort:

'off!
"internal'
'%f anim %n.%e'
'manual’
[0 0]
'off!
'external’
"*BUILTIN'
'off!

‘on'

8123

5

20

8124

The Simulink 3D Animation Viewer

is the default viewer for viewing virtual worlds. Any virtual worlds that you open are
displayed in the viewer.

1

For example, at the MATLAB command prompt, type

The Planets example is loaded and the virtual world is displayed in the Simulink 3D
Animation Viewer.

2

Installation

2-4

B Planets (o]l]
File View | Viewpoints | Mavigation Rendering Simulaticn Recording Help k.
 View from top > | Fly ~rd P LD el o A

2 To view the virtual world through the web browser, from the MATLAB command
prompt, use the view and vrview commands.

3 Reset the Simulink 3D Animation Viewer as your default viewer by typing:

vrsetpref('DefaultViewer', 'factory')

Alternatively, you can use the MATLAB File menu Preferences dialog box. See “Set
Simulink 3D Animation Preferences” on page 2-6.)

See Also

Functions
vrgetpref | vrsetpref

See Also

Related Examples

“Set Simulink 3D Animation Preferences” on page 2-6
“Install V-Realm Editor” on page 2-18

“Test the Viewer Installation” on page 2-21

“Simulink 3D Animation Product Description” on page 1-2
“Set the Default Editor” on page 5-6

2-5

2

Installation

Set Simulink 3D Animation Preferences

2-6

In this section...

“Simulink 3D Animation Preferences Dialog Box” on page 2-8
“3D World Editor Preferences Dialog Box” on page 2-10
“Canvas Preferences Dialog Box” on page 2-11

“Figure Appearance Preferences Dialog Box” on page 2-11
“Figure Rendering Preferences Dialog Box” on page 2-12
“Figure 2-D Recording Preferences Dialog Box” on page 2-14
“Figure Frame Capture Preferences” on page 2-15

“World Preferences Dialog Box” on page 2-16

The Simulink 3D Animation software opens with default preference settings. You can
change these settings so that the next time you open a Simulink 3D Animation interface,
such as the 3D World Editor, the associated preferences take effect. Use one of these
approaches:

* From the MATLAB Toolstrip, in the Home tab, in the Environment section, select
Preferences > Simulink 3D Animation.

Set Simulink 3D Animation Preferences

. A\ Preferences EI@ .

WULIE ATy LET

* Simulink 3D Animation Preferences
----- Toolbars

----- Command Window

. Default VRML viewer: [internal -
----- Command History - -
- Editor/Debugger | VRML Editer: ' Built-in 30 World Editor -
----- Help I 1
----- Web

VRML data types representation in MATLAB
----- Variable Editor

Bool: logical -
----- Workspace o : o9 -
..... GUIDE Int32: | double]
----- Time Series Tools Float: " double =

[-Figure Copy Template

""" Compiler Communication

----- Report Generator

----- SystemTest Ll 8123
----- Bioinformatics Tools VR Port: 8124
----- Computer Vision System Toolbo: 3 Transport Buffer: 5

----- Database Toolbox
..... DSP System Toolbox Transport Timeout: 20
----- Image Acquisition
----- Image Processing

----- Instrument Control
----- System Objects

----- Simulink

Canvas

| ok || canca || Apply |[Hep

e At the MATLAB command line, use these functions:

Tip The preferences dialog box shows a subset of the preferences that you can set using
MATLAB functions.

2-7

2 Installation

Simulink 3D Animation Preferences Dialog Box

The top dialog box is for general Simulink 3D Animation preferences.

Preference

Value

Description

Default Viewer

internal |web

Default: 'internal’

Specifies which viewer is used to view a virtual
world. The default Simulink 3D Animation Viewer
is used when the preference is set to internal.
The web browser is used when this preference is
set to web.

Default Editor

Built-in 3D World
Editor| V-Realm
Builder | MATLAB
Editor | Custom

Specifies which virtual world editor to use. Path to
the virtual world editor. If this path is empty, the
MATLAB editor is used.

The path setting is active only if you select the
Custom option.

To open a virtual world file in a third-party editor,
do not use the vredit command. For example, to
open a virtual world in the Ligos V-Realm Builder
editor:

1 Set the default editor to V-Realm Builder. In
MATLAB, enter:

vrsetpref('Editor', '*VREALM');

2 To open a file in the V-Realm editor, in
MATLAB navigate to a virtual world file, right-
click, and select Edit.

Note The vredit command opens the 3D
World Editor, regardless of the default editor
preference setting.

2-8

Set Simulink 3D Animation Preferences

Preference

Value

Description

Bool

logical | char

Default: Logical

Specifies the handling of the virtual world Bool
data type for vrnode/setfield and vrnode/
getfield. If set to Logical, the virtual world
Bool data type is returned as a logical value. If set
to char, the Bool data type is returned 'on' or
'off'.

Int32

int32 | double
Default: double

Specifies handling of the virtual world Int32 data
type for vrnode/setfield and vrnode/
getfield. If set to int32, the virtual world
Int32 data type is returned as 'int32"'. If set to
double, the Int32 data type is returned as
'double’.

Float

'single' | 'double’

Default: 'double’

Specifies the handling of the virtual world float
data type for vrnode/setfield and vrnode/
getfield. If set to single, the virtual world
Float and Color data types are returned as
'single'. If set to double, the Float and Color
data types are returned as 'double’.

HTTP Port

Numeric

Default: 8123

IP port number used to access the Simulink 3D
Animation server over the web via HTTP. If you
change this preference, restart the MATLAB
software before the change takes effect.

VR Port

Numeric

Default: 8124

IP port used for communication between the
Simulink 3D Animation server and its clients. If
you change this preference, restart the MATLAB
software before the change takes effect.

Transport Buffer Numeric Length of the transport buffer (network packet
overlay) for communication between the Simulink
Default: 5 3D Animation server and its clients.
Transport Timeout |Numeric Amount of time, in seconds, that the Simulink 3D
Animation server waits for a reply from the client.
Default: 20 If there is no response from the client, the

Simulink 3D Animation server disconnects from
the client.

2-9

2 Installation

3D World Editor Preferences Dialog Box

The Simulink 3D Animation preferences include the following preferences for the 3D

World Editor.

Property Value Description

Position Specify the pixel location for the |Specifies the default location for
lower-left corner, the width, and |the 3D World Editor. If you select
the height (for example, [96 120 |Save position on exit, the default
862 960] position changes to the position of

the 3D World Editor used when

Default: Depends on current you last exited it.
screen resolution

Triad none| top left | top right |Specifies where in the virtual

| bottom left | bottom
right | center

Default: 'bottom left'

world display pane to locate a triad
of coordinate axes.

View pane mouse
behavior

navigate | select

Default: navigate

Specifies whether the mouse in the
view pane is in navigation mode or
selection mode (for highlighting
corresponding nodes in the tree
view pane).

Save position on exit off | on Causes the 3D World Editor to
open in the same location where
Default: on the editor was when you last
exited it.
Preserve Layout per off | on Specifies whether the 3D World
Virtual Reality 3D File Editor starts up either with the
Default: on default virtual world display layout

or with the layout as it was when
you exited it previously. The saved
layout includes settings for the
view, viewpoints, navigation, and
rendering. Simulink 3D Animation
saves the layout in a separate
virtual world 3D file for up to eight
files.

2-10

Set Simulink 3D Animation Preferences

Property Value Description

Highlight selected off | on Specifies whether to highlight

objects virtual world objects selected in
Default: on the view pane.

Canvas Preferences Dialog Box

The Simulink 3D Animation preferences include a Navigation panel preference. The
canvas preferences apply to the 3D World Editor, Simulink 3D Animation Viewer, and
Simulink 3D Animation Web Viewer.

Property

Value

Description

Navigation panel

none | minimized [translucent
| opaque

Default: none

Controls the appearance of the
navigation panel in the canvas.

Figure Appearance Preferences Dialog Box

The figure appearance preferences apply to the 3D World Editor and Simulink 3D
Animation Viewer. Some of these preferences also apply to Simulink 3D Animation Web

Viewer.
Property Value Description
Toolbar on | off Specifies whether the toolbar is
displayed.
Default: on
Tooltips off |on Specifies whether tooltips are
displayed.
Default: on
Status bar off |on Specifies whether status bar is
displayed.
Default: on
Also applies to the Simulink 3D
Animation Web Viewer.

2-11

2 Installation

Property Value Description
Navigation zones off |on Specifies whether navigation
zones are displayed.
Default: on

Also applies to the Simulink 3D
Animation Web Viewer.

Navigation panel

none | minimized |
translucent | opaque

Default: none

Controls the appearance of the
navigation panel in the canvas.

Triad none | top left | top Specifies where in the virtual
right | bottom left | world display pane to locate a
bottom right | center triad of coordinate axes.
Default: bottom left

Position Matrix with upper-right and Specifies the default location of
lower-left corner position. the figure window.

Default: [5 92 576 380]
Figure Rendering Preferences Dialog Box
The figure rendering preferences specify how virtual worlds are displayed.
Property Value Description
Antialiasing on | off Determines whether
antialiasing is used when
Default: on rendering scene. Antialiasing
smooths textures by
interpolating values between
texture points.
Lighting off |on Specifies whether the lighting is
considered when rendering. If it
Default: on is off, all the objects are drawn

as if uniformly lit.

2-12

Set Simulink 3D Animation Preferences

Property Value Description
Sound off |on If a virtual world contains a
Sound node and your computer
Default: on supports sound, then you can
listen to the sound in a virtual
world.
Stereo 3D off | anaglyphactive Specifies whether to use

Default: of f

stereoscopic 3D vision.

For anaglyph viewing, use red/
cyan 3D glasses. Viewing a
virtual world in this mode
causes the colors to appear as
almost grayscale. This approach
does not require any special
computer hardware or software.

For active stereo viewing, use
active shutter 3D glasses. This
approach preserves color effects
and produces more powerful 3D
effects. Active stereo requires a
specially configured computer
and monitor setup.

Stereo 3D Camera Offset

Numeric

Default: 0.1

Specifies the distance between
the two points of view (cameras)
that produce the 3D effect. The
higher the offset, the further
apart the cameras are, and thus
the deeper the 3D effect.

Stereo 3D Horizontal Image
Translation

Numeric value from 0 through
1, inclusive. The larger the
value, the further back the
background appears to be.

Default: 0

The horizontal relationship of
the two stereo images. By
default, the background image
is at zero and the foreground
image appears to pop out from
the monitor toward the person
viewing the virtual world.

2-13

2 Installation

Property Value Description
Transparency off |on Specifies whether transparency
information is considered when
Default: on rendering.
Wireframe off |on Specifies whether objects are
drawn as solids or wireframes.
Default: off
Textures off | 'on' Turns texture rendering on or
off.
Default: on

Maximum texture size

auto | 32 <= x <=video
card limit, where x is a power of
2 (video card limit is typically
1024 or 2048)

Sets the maximum pixel size of
a texture used in rendering
vrfigure objects. The smaller
the size, the faster the texture
can render. Increasing this
value improves image quality
but decreases performance. A
value of 'auto' sets the
maximum pixel size. If the value
you enter is unsuitable, a
warning can trigger. The
software then automatically
adjusts the property to the next
smaller suitable value.

Figure 2-D Recording Preferences Dialog Box

Property

Value

Description

2-D animated file name

Character vector

Default: '%f _anim %n.avi'

Specifies the 2-D offline
animation file name. The name
can contain tokens that are
replaced by the corresponding
information when the animation
recording takes place. For
further details, see “File Name
Tokens” on page 4-16.

2-14

Set Simulink 3D Animation Preferences

Property

Value

Description

Recording compression
method

"' | auto | lossless |
codec_code

Default: auto

Specifies the compression
method for creating 2-D
animation files. The codec code
must be registered in the
system. See the MATLAB
documentation for
VideoWriter.

Recording compression
quality

Integer 0-100.

Specifies the default quality of
2-D animation file compression

Default: 75 for new vrfigure objects.
Frames per second Numeric Specifies the default frames per
second playback speed.
Default: 15
Figure Frame Capture Preferences
Property Value Description
CaptureFileFormat tif | png Specifies file format for a
captured frame file.
Default: tif
CaptureFileName Character vector Specifies the frame capture file

Default: '%f _anim %n.tif'

name. The name can contain
tokens that are replaced by the
corresponding information
when the animation recording
takes place. For further details,
see “Define File Name Tokens”
on page 4-14.

2-15

2 Installation

World Preferences Dialog Box

Property

Value

Description

3-D animated file name

character vector

Default: '%f_anim %n.%e'

3-D animation file name. The
name can contain tokens that
are replaced by the
corresponding information
when the animation recording
takes place. For details, see
“Define File Name Tokens” on
page 4-14.

Recording mode

manual | scheduled

Default: manual

Animation recording mode.

Recording interval

Vector of two doubles

Default: [0 0]

Start and stop times for
scheduled animation recording.
Corresponds to the virtual world
object Time property.

Time source

external | freerun

Default: external

Source of the time for the
virtual world. If set to
external, time in the scene is
controlled from the MATLAB
software (by setting the Time
property) or the Simulink
software (simulation time). If set
to freerun, time in the scene
advances independently based
on the system timer.

Allowing viewing from the
Internet

off | on

Default: of f

Remote access flag. If the
virtual world is enabled for
remote viewing, it is set to on;
otherwise, it is set to off.

Create or update world
thumbnail file when world is
opened

off | on

Default: of f

Specify whether create world
thumbnails when you open a
virtual world.

2-16

See Also

See Also

Functions
vrgetpref | vrsetpref

Related Examples
. “Set the Default Editor” on page 5-6
. “Set the Default Viewer” on page 2-2

2-17

2 Installation

Install V-Realm Editor

In this section...

“V-Realm Editor Installation on Windows Platforms” on page 2-18
“V-Realm Builder Help” on page 2-19

“Uninstall V-Realm Builder” on page 2-19

Tip The Simulink 3D Animation product includes the 3D World Editor for editing virtual
worlds. You can use the 3D World Editor on all supported platforms for Simulink 3D
Animation. The 3D World Editor is the default editor. For a comparison of editors, see
“Choose a Virtual World Editor” on page 5-2.

V-Realm Editor Installation on Windows Platforms

When you install the Simulink 3D Animation product, files are copied to your hard drive
for the Ligos V-Realm Builder, which is an optional virtual world editor available on
Windows platforms. However, the installation is not complete.

Installing the virtual world editor writes a key to the Microsoft® Windows registry, making
extra V-Realm Builder library files available for you to use. The installation associates the
Edit button in Simulink 3D Animation blocks with this editor:

From your desktop, right-click the MATLAB icon and select Run as administrator.
In the MATLAB Command Window, type

vrinstall -install

or type

vrinstall('-install')

The MATLAB Command Window displays the following messages:

Starting editor installation...
Done.

3 Type

vrinstall

2-18

Install V-Realm Editor

If the editor installation was successful, the MATLAB Command Window displays this
message:
Virtual World editor: installed
4 Exit MATLAB and restart MATLAB.
Set the default editor to V-Realm Builder. In MATLAB, enter:

vrsetpref('Editor', '*VREALM');

6 To open a file in the V-Realm editor, in MATLAB navigate to a virtual world file, right-
click, and select Edit.

Note The vredit command opens the 3D World Editor, regardless of the default
editor preference setting.

V-Realm Builder Help

Note You cannot access the V-Realm Builder documentation from the web. If you are
reading this page on the web, then open the MATLAB Help browser and navigate to the V-
Realm Builder documentation.

To access V-Realm Builder help from the MATLAB Help browser, click V-Realm Builder
help.

You can view the V-Realm Builder help even if you have not installed V-Realm Builder.

Uninstall V-Realm Builder

Use the MathWorks uninstaller. Running this utility removes the Simulink 3D Animation
and Ligos V-Realm Builder software from your system. It also restores your previous
system configuration.

1 On the Windows task bar, click Start, point to MATLAB, and then click the
uninstaller.

The MathWorks uninstaller begins running.
2 Select the Simulink 3D Animation check box.

2-19

matlab:web(fullfile(matlabroot, 'toolbox', 'sl3d', 'vrealm', 'manual', 'vrealm_man.html'))
matlab:web(fullfile(matlabroot, 'toolbox', 'sl3d', 'vrealm', 'manual', 'vrealm_man.html'))

2 Installation

3 Follow the remaining uninstall instructions.

See Also

Functions
vrgetpref | vrinstall | vrsetpref

Related Examples
. “Test the Viewer Installation” on page 2-21
. “V-Realm Builder Help” on page 2-19

2-20

Test the Viewer Installation

Test the Viewer Installation

In this section...

“Section Overview” on page 2-21
“Simulink Testing” on page 2-21
“MATLAB Testing” on page 2-25

Section Overview

The Simulink 3D Animation product includes several Simulink models with the associated
virtual worlds. These models are examples of what you can do with this software. You can
use one of these examples to test the installation of the virtual world viewer.

Simulink Testing

Before you can run this example, install the MATLAB, Simulink, and Simulink 3D
Animation products as follows:

1 Inthe MATLAB Command Window, type
vrpend

A Simulink window opens with the model for an inverted pendulum. This model,
which you can view in three dimensions with the software, has an interactive set

point and trajectory graph.

2-21

2 Installation

'.'rpend 4

| Marker XZ Pandulum XYZ P Pendulum translation
o Pendulum XZ Marker XYZ —‘ 30 angle 1 »| Pole1.rotation
Coordinates 3D P 2D angla
transformation 3D angle 2 | Pole2 rotation
Fole angle 30 -)
TFansformation | Markertranslation
Y

4 FID
Position
I 2-dimensional

Puosition Force
Controller Angle

Pendulum 20D M . @l

Trajectory
FID Graph
2-dimensional
Angle
Controller

The Simulink 3D Animation Viewer opens with a 3-D model of the pendulum.

2-22

Test the Viewer Installation

File View Viewpoints MNavigati Renderi Simulati Recording Help L]
Pseudo orthographic view vl Examine ']J Ll | B = | addq | . | | o] | » .

Pseudo orthographic view

In the Simulink 3D Animation Viewer, from the Simulation menu, click Run. A
Trajectory Graph window opens, and a simulation starts running.

} Trajectory Graph 1 [=]
Trajectory Graph
10 T T T
5| i
@
% ot o] 1
>
sl i
.1 [l 1 1 1
-10 -5 [4] 5 10
K Axis

2-23

2

Installation

2-24

In the Simulink 3D Animation Viewer, point to a position on the blue surface and left-
click.

The pendulum set point, represented by the green cone, moves to a new location.
Next, the path is drawn on the trajectory graph, and then the pendulum itself moves
to the new location.

In the Simulink 3D Animation Viewer, you see the animated movement of the
pendulum. Use the viewer controls to navigate through the virtual world, change the
viewpoints, and move the set point. For more information about using the Simulink
3D Animation Viewer controls, see “Simulink 3D Animation Viewer” on page 7-5.

In the Simulink window, double-click the Trajectory Graph block.

The Block Parameters: Trajectory Graph dialog box opens.
From the Stipend mode list, choose Mouse, then click OK.

— Trajectory scope. [mask]
Trajectory scope using MATLAE graph window. Enter plotting ranges.
—Parameter
HemiiF:
|10
WS
J1o
y-min:
|10
YT
J1o
Sample time:
Joz
Setpoint mode IVH sensor LI
i
Irput signal
VR sensar
[Ok | Cancel | Help | &pob |

You can now use the trajectory graph as a 2-D input device to set the position of the
pendulum.

Move the mouse pointer into the graph area and click.

The set point (red circle) for the pendulum position moves to a new location.

Test the Viewer Installation

7 In the Simulink window, from the Simulation menu, click Stop.

The trajectory for the pendulum is displayed in the graph as a blue line.

) Trajectory Graph =1o] x|
Trajectory Graph
10 T

Y ANiS
L]

TS 5 0 5 10

8 Close the Simulink 3D Animation Viewer and close the Simulink window.
You can try other examples in “Simulink Interface Examples” on page 1-21, or you can

start working on your own projects.

MATLAB Testing

This model, which can be viewed in three dimensions with the software, has a MATLAB
interface to control the figure in a virtual world viewer window.

Additional examples are listed in the table “MATLAB Interface Examples” on page 1-33.
1 Inthe MATLAB window, type
vrmemb

The MATLAB interface displays the following messages:

View the published version of this example to learn more about
"vrmemb.m".

The Simulink 3D Animation Viewer opens with a 3-D model.

2-25

2 Installation

B VRML MATLAB Membrane felle =
File View Viewpoints Mavigation Rendering Simulation Recording Help L]
Original view v Bamine v J P |4 D d | e

Original view I Pos:[-193.40 -265.15 220.48] Dir:[0.48 0.67 -0.56]

2 Use the viewer controls to move within the virtual world, or use the example dialog
box to rotate the membrane. Sometimes the Simulink 3D Animation example dialog
box is hidden behind the viewer window.

JRIETE
i Rotation | | o
e
|7 5 Zoom ﬂ I bl
See Also
Functions
vrinstall

2-26

See Also

Related Examples

. “Set the Default Editor” on page 5-6

. “Set the Default Viewer” on page 2-2

. “Set Simulink 3D Animation Preferences” on page 2-6
. “Install V-Realm Editor” on page 2-18

2-27

Simulink Interface

The Simulink 3D Animation product works with both the MATLAB and the Simulink
products. However, the Simulink interface is the preferred way of working with the
software. It is more straightforward to use and all the features are easily accessible
through a graphical interface.

+ “Connect Virtual Worlds and Models” on page 3-2

* “Open a Viewer Window” on page 3-12

« “Display Virtual World and Start Simulation” on page 3-13

* “View Virtual World on Host Computer” on page 3-16

* “View Virtual World Remotely” on page 3-20

* “Modify Remote Virtual World Via Sensor Events” on page 3-26

* “Interact with Generated Code” on page 3-27

3 Simulink Interface

Connect Virtual Worlds and Models

3-2

In this section...

“Output Simulation Data to a Virtual World” on page 3-2
“Input Virtual World Data to a Model” on page 3-8
“Change the Associated Virtual World” on page 3-9

After you create a virtual world and a Simulink model, to have the virtual world interact
with a dynamic system simulation, connect the model and the virtual world using
Simulink 3D Animation blocks.

* To use simulation data from a model to interact with a virtual world, include a VR Sink
block in the model. For details, see “Output Simulation Data to a Virtual World” on
page 3-2.

* To use information from a virtual world to interact with a model, include a VR Source
block in the model. For details, see “Input Virtual World Data to a Model” on page 3-
8.

Simulating a Simulink model generates signal data for a dynamic system. To output data
from the model to control and animate a virtual world, use a VR Sink block.

Output Simulation Data to a Virtual World

This example shows how to use simulation data from a model to display a dynamic
visualization of the simulation. The example simulates a plane takeoff and lets you view it
in a virtual world. This example assumes that you are using the Simulink 3D Animation
Viewer.

Tip For other examples of how to use the VR Sink block, see Magnetic Levitation Model
and “Geometry Morphing”.

1 Inthe MATLAB Command Window, type

vrtut2

A Simulink model opens without a Simulink 3D Animation block that connects the
model to a virtual world.

matlab:showdemo('vrmaglev')

Connect Virtual Worlds and Models

P& vrtut2
£1
Attitude
2000 | Fx Fitch s of Rotation
Fx N 1;-/- q —" > Display Pitch
Té::'foLiﬂ i} adot —h-
Flane Weight Ground Ground / Lift XeZe » / Lh{?l
rgcm‘:tfrsaﬁ:;u N Display Position
A Uw —h- VA Sgnal Expande
®—> V > u
o Filot Input Ax.Aer—b-
Equations of Motion
{Body Axes)
2 Simulate the model by clicking Simulation > Run.
Observe the results of the simulation in the scope windows.
3 To the right of the model, left-click and type VR Sink. In the dialog box, select the
VR Sink block.
4

Select a virtual world for the visualization of your simulation. Double-click the VR
Sink block. Click Browse and select vrtkoff.wrl.

3-3

3 Simulink Interface

&% Parameters: VR Sink - O *

VR Sink
Writes Simulink values to virtual world node fields. Fields to be written are marked by
checkboxes in the tree view. Every marked field corresponds to an input port of the block.

Virtual Werld Properties Virtual World Tree

S il
2z Show node types Show field types

Browse

b Mo world loaded

View New Reload -3¢ No world filename specified.

Output

[] Open Viewer automatically

[Allow viewing from the Internet

Description:

Block Properties
Sample time (-1 for inherit):

0.1
[Show video output port

Video output signal dimensions:

Set up and preview video output

oK Cancel Help Apply

5 Associate a virtual world with the model. At the Source File text box, click the
Browse button. The Select World dialog box opens. Find the folder matlabroot
\toolbox\sl3d\sl3ddemos. Select the file vrtkoff.wrl and click OK.

6 In the Description text box, examine the brief description of the model. This
description appears on the list of available worlds served by the Simulink 3D
Animation server.

7 Select the Open Viewer automatically parameter and click Apply. The VR Sink
dialog box displays the virtual scene node tree, showing the structure of the associate
virtual world.

8 Expand the Plane (Transform) node.

The list of characteristics of the plane can be driven from the Simulink interface. This
model computes the position and the pitch of the plane.

9 Inthe Plane (Transform) tree, select the translation and rotation fields,
which represent the position and the pitch of the plane, respectively. Click OK.

3-4

Connect Virtual Worlds and Models

10

J Parameters: ¥R Sink

=10l

YR Sink

Wites Simulink values ta virtual world node Fields, Fields to be written are marked by
checkbaxes in the tree view. Every marked field corresponds ko an input port of the black.

~World propertie

~Source file
vrthoff, vl Erowise |
Wiew | Edit | Reload |
~Qutput

[~ Open YRML Viewer automatically

v Allow viewing Frorm the Internet

Description:

¥R Plane Take-oFf

r~Block propertie:
Sample time (-1 for inherit):

.1
[~ Show video output port

Videa output signal dmensions:

Set up and preview viden autput

WRML Tree

[¥ show node types [W Show Figld types

{MavigationInfo)

{Background)

(DirectionalLight)
(DirectionalLight)

(Transform)

{Transform)

(Wigwpoint)

Cameral {Transform)

Plane (Transform)

X addChildren (MFMode)

X removeChildren (MPMode)

D center (SFYec3l)

rokation (SFRokation)

D scale (SFvecif)

[scaleCrientation (SFRatation)
translatio 1]
[bboxCenter (SFYecar)
D bboxSize {SFVec)
b children (MFMode)

- ® (Shape]

£l B Block (TransForm)

(- & {Shape)

if

-

[

Ok | Cancel |

| Apply |

In the Simulink diagram, the VR Sink block is updated with two inputs.

Flane. mtation

Flane tmnslkation

WH Sink

The first input is Plane rotation. Define the rotation with a four-element vector.
The first three numbers define the axis of rotation. In this example, it is [1 0 0] for the
x-axis (see the Pitch Axis of Rotation block in the model). The pitch of the
plane is expressed by the rotation about the x-axis. The last number is the rotation
angle around the x-axis, in radians. The rotation is in terms of the orientation of the
object in space, relative to its parent node.

In the Simulink model, connect the line going to the Scope block labeled Display
Pitch to the Plane rotation input.

3 Simulink Interface

The second input is Plane translation. This input describes the position of the
plane in the virtual world. This position consists of three coordinates, x, y, z. The
connected vector must have three values. In this example, the runway is in the x-z
plane (using the VR Signal Expander block). The y-axis defines the altitude of the
plane.

11 [n the Simulink model, connect the line going to the Scope block labeled Display
Position to the Plane translation input.

Remove the Scope blocks. Your model looks similar to the figure shown.

|| vrtut2
2
Attitude [100]
A
3000 | Fx PitchAxds of Rotation
L)
Fix P f 1 _’ Pland rotation
s
Plane.translaticn
Tekeaff Lift gdat —>
max |_p|rs R Sirk
9810 L é"/_/:
- ezl - o
Flane Weight Ground Ground/ Lift ’ %
Compensation | VR
b
A Uw —» VR Signal Expander
T
b
o |V A-N=|
Pilct Input

Equaticns of Mation
(Body Axes)

12 Double-click the VR Sink block. A viewer window containing the virtual world of the
plane opens.

3-6

Connect Virtual Worlds and Models

13

Bl VR Plane Take-Off [==
File View Viewpoints MNavigati Renderi Simulati Recording Help L]
[Airpor‘t vIFI},r ']JP|,§,9|QTQ_|.||3|’.

Tip When you next open the model, the associated virtual scene opens automatically.
This behavior occurs even if the Simulink 3D Animation block associated with the
virtual scene is in a subsystem of the model.

Run the simulation. In the Simulink 3D Animation Viewer, from the Simulation
menu, click Run.

A plane, moving right to left, takes off .

3 Simulink Interface

3-8

Bl VR Plane Take-Off [==
File View Viewpoints Mavigati Renderi Simulati Recording Help L]
[Airpor‘t vIFI},r ']JP|,§,9|QTQ_|.||3|’.

Input Virtual World Data to a Model

You can use a VR Source block to provide interactivity between the virtual world and the
simulation of a Simulink model. The VR Source block registers user interactions with the
virtual world and passes that data to the model to affect the simulation of the model. The
VR Source block reads values from virtual world fields specified in the block dialog box
and inputs their values to a model. Using the block in this way, you can:

¢ Use sensor data from a virtual world to control a simulation.

* Provide interactivity between user navigation and interaction in a virtual world and
the simulation of the model.

* Have a simulation react to virtual world events, such as time ticks or outputs from
scripts.

¢ Use static information from the virtual world, such as the size of a box, to control a
simulation.

For example, you can define setpoints in the virtual world, so that user can specify the
location of a virtual world object interactively. The simulation then responds to the

Connect Virtual Worlds and Models

changed location of the object. The VR Source block can read into the model events from
the virtual world, such as time ticks or outputs from scripts. The VR Source block can also
read into the model static information about the virtual world (for example, the size of a
box defined in the virtual world 3D file). For examples of models that use the VR Source
block, see Magnetic Levitation Model and Virtual Control Panel.

To use global coordinates for a virtual world object, include a Transform node in that
object. Open a second viewer window by double-clicking the VR Source block. In the
second viewer window (which can overlap the first window), select Simulation > Block
Parameters. For the Transform node of the object, select in the Extensions branch one
or both of these Simulink 3D Animation extensions for converting rotation and translation
values into global coordinates: rotation abs and translation abs.

- » Grip_Reference (Transform)

- ¥ addChildren (MFMNode)

- ¥ removeChildren (MFNode)
- ¥ children (MFNode)

D center (SFVec3f)

D rotation (SFRotation)

D scale (SFVec3f)

D scaleQrientation (SFRotation)
D translation (SFVec3f)

D bboxCenter (SFVec3f)

-] bboxSize (SFVec3f)

= 4§ Extensions

; rotation_abs (SFRotation)
] translation_abs (SFVec3f)

See the Manipulator Moving a Load with Use of Global Coordinates example. For
additional information about using the VR Source block and other approaches for provide
interactivity in the model, see “Use Sensors” on page 5-26.

Change the Associated Virtual World

You can associate a different virtual world with a Simulink model or connect different
signals.

After you associate a virtual world with a Simulink model, you can select another virtual
world or change signals connected to the virtual world. This example assumes that you
have connected the vrtut2 Simulink model with a virtual world. See “Input Virtual World
Data to a Model” on page 3-8.

1 Double-click the VR Sink block in the model. The viewer opens.

3-9

matlab:showdemo('vrmaglev')
matlab:showdemo('vrdemo_panel')
matlab:showdemo('vrmanipul_global')

3 Simulink Interface

2 Open the Block Parameters dialog box of the VR Sink block by selecting Simulation
> Block Parameters.

3 At the Source File text box, click the Browse button. Find the folder matlabroot
\toolbox\s13d\sl3ddemos. Select the file vrtkoff2.wr1, and click OK. In the
VR Sink dialog box, click Apply.

A virtual scene tree appears on the right side, associating a different virtual world
with the model.

4 Expand the Plane (Transform) node.

The Plane Transform tree expands. Now you can see what characteristics of the
plane you can drive from the Simulink interface. This model computes the position.

5 Inthe Plane Transform tree, select the translation field check box. Clear the
rotation field check box. Click OK.

The VR Sink block is updated and changes to just one input, the Plane
translation. The VR Sink block is ready to use with the new parameters defined.

6 Verify that the correct output is connected to your VR Sink block. Connect the output
from the VR Signal Expander is connected to the single input.

[P vrtut2

2
Attitude [100
A
2000 » Fx PitchAxis of Rotation -----3
i
s j_ Flane.translation
Taxeoff Lift qdot —D-
max F: VR Sink
9810 L é"_/_,’/_,_,_." L
2
S /L e Ze
Plane Weight Ground Ground/ Lit ‘%._"\k‘_‘_‘::
Compensation : VR
2
Uw -p VR Signal Expander
O/
2
Clock V AxAz _..
Filot Input

Equatins of Mation
(Body Axes)

7 In the Simulink 3D Animation Viewer, from the Simulation menu, run the simulation
again and observe the simulation.

3-10

See Also

See Also

Functions
vredit | vrjoystick|vrlib | vrspacemouse

Blocks

Joystick Input | Space Mouse Input | VR Sink | VR Source | VR Text Output | VR To Video |

VR Tracer

Related Examples

. “Add Sensors to Virtual Worlds” on page 5-26
. “Interact with Generated Code” on page 3-27
. “Link to Models”

. “Interact with Virtual Reality Worlds”

3-11

3 Simulink Interface

Open a Viewer Window

3-12

When you simulate a model that contains a VR Sink block, your default viewer opens and
displays the virtual scene. For more information on setting your default viewer, see “Set
the Default Viewer” on page 2-2.

Multiple instances of the viewer can exist on your screen. A viewer appears each time you
select the File menu New Window option in the Simulink 3D Animation Viewer. This
feature is useful if you want to view one scene from many different viewpoints at the same
time.

If you close the viewer window, you can reopen it. In the Simulink model window, double-
click the VR Sink block.

See Also

Functions
vredit | vrgetpref | vrsetpref

Related Examples

. “Set the Default Viewer” on page 2-2
. “View Dynamic System Simulations”

Display Virtual World and Start Simulation

Display Virtual World and Start Simulation

This example explains how to display a simulated virtual world using the Simulink 3D
Animation Viewer on your host computer. The Simulink 3D Animation Viewer is the
default and recommended method for viewing virtual worlds. A Simulink window opens
with the model of a simple automobile. Automobile trajectory (vehicle position and angle)
is viewed in virtual reality:

1 Inthe MATLAB Command Window, type

vrtutl

A Simulink window opens with the model of an automobile.

[P vrtut1

¥

| Automaobile.rotation

Y

m =

il

Speed X

| Automabile.translation

i =
.

0.25 ——M™

-

Copyright 1998-2014 HUMUSOFT =s.ro. and The Math\Waorks, Inc.

Y

m =

4

Speed £

A virtual world viewer also opens with a 3-D model of the virtual world associated
with the model.

3-13

3 Simulink Interface

3-14

n‘u’R Car in the Mountains EI@
File View Viewpoints Mavigation Rendering Simulation Recording Help L]
:Viewl-Obser\.rer v::Examine v¢JP|,§,9|Q+ Q_|.||ﬁ| » .

View 1 - Observer I Pos:[20.00 8.00 50.00] Dir:[0.00 -0.20 -0.98]

In the Simulink 3D Animation Viewer, from the Simulation menu, click Run.

The simulation starts. In the Simulink 3D Animation Viewer, a car moves along the
mountain road.

Use the Simulink 3D Animation Viewer controls to move the camera within this
virtual world while the simulation is running. For more information on the Simulink
3D Animation Viewer controls, see “Simulink 3D Animation Viewer” on page 7-5.

In the Simulink 3D Animation Viewer, from the Simulation menu, click Stop.

See Also

Functions
vredit | vrgetpref | vrsetpref

Blocks
VR Sink | VR Source

See Also

Related Examples

. “Set the Default Viewer” on page 2-2

. “View Dynamic System Simulations”

. “View Virtual World on Host Computer” on page 3-16
. “View Virtual World Remotely” on page 3-20

3-15

3 Simulink Interface

View Virtual World on Host Computer

3-16

Normally, you view a virtual world by double-clicking the VR Sink in the Simulink model.
The virtual world opens in the Simulink 3D Animation Viewer or your HTML5-enabled
web browser, depending on your DefaultViewer setting. For more information on
setting your default viewer, see “Set the Default Viewer” on page 2-2.

Alternatively, you can view a virtual world in your web browser by selecting an open
virtual world from a list in your web browser. You can display the HTML page that
contains this list by connecting to the Simulink 3D Animation host. The host is the
computer on which the Simulink 3D Animation software is running. You do not need an
HTML5-enabled web browser to display this page.

A virtual world appears on this list in your web browser only if the vrworld
Description property contains a string. If this property is empty for a virtual world,
that world is not accessible from the remote host. The simplest way to set a world
description is to define the virtual world 3D file WorldInfo node and fill in the title
field for that node. You can set up the WorldInfo node to look like the following:

WorldInfo { title
"My First World"
info ["Author: XY" 1]
}

The vrworld object uses the title string in the virtual world 3D file for the
Description property of the vrworld object. You can change this property with the
Simulink 3D Animation MATLAB interface (vrworld/set).

The following procedure describes how to connect to the Simulink 3D Animation host:
1 At the MATLAB command prompt, type
vrbounce

The VR Bouncing Ball example is loaded and becomes active.
2 Open your HTML5-enabled web browser. In the address line of the browser, type

http://localhost:8123

Note To connect to the main HTML page from a client computer, type http://
hostname: 8123, where hostname is the name of the computer on which the
Simulink 3D Animation software is running.

View Virtual World on Host Computer

The following page is loaded and becomes active.

The main HTML page for the Simulink 3D Animation product lists the currently
available (active) virtual worlds. In this example, the VR Bouncing Ball virtual world
appears as a link.

& Simulink 3D Animaticn - Windows Internet Explorer E@
@Q - |§, http://localhost:8123/index.html| < ‘ "7| A ‘ ‘ Bing P ~|
File Edit View Favorites Tools Help x %Coﬂver‘t - @Selec’c

{j Favorites {;3 £ | Generating HTML Output ... @ | Web Slice Gallery v Suggested Sites *
»

(& Simulink 3D Animation ﬁ - ~ 3 @ ~ Page~ Safety~ Toolsw @.v

Simulink 3D Animation

Worlds currently available: « Developed by:

» VR Bouncing Ball » Humusoft

Powered by:
» MATLAB A

®

« VRML 97 ...

€ Local intranet | Protected Mode: Off Sy v H100% -

3 Click VR Bouncing Ball.

The VR Bouncing Ball virtual world appears in your web browser.

3-17

3 Simulink Interface

3-18

/4§ simulink 3D Animation - Microsoft Internet Explorer provided by The Mathworks, I... =] B3

JFiIe Edit Wiew Faworites Tools Help | ;','
| Address [&] http:/1127.0.0.1:8123jworlds/3index.html =]

[~
|@ Applet com.mathworks.toalbox. e, client, AppYR. nokir ’_ l_ l_ l_ l_ |h‘_4 Local intranet =

From the main HTML page, select one of the listed worlds or click the reload link to
update the status of the virtual worlds supported by the software. This page does not
require the VRML or X3D capabilities from the browser; it is a standard HTML page.
However, when you click one of the virtual world links in the list, the browser must be
HTML5-enabled to display the virtual world correctly and to communicate with the
Simulink 3D Animation product.

See Also

See Also

Related Examples

. “Display Virtual World and Start Simulation” on page 3-13
. “Set the Default Viewer” on page 2-2

. “View Dynamic System Simulations”

. “View Virtual World Remotely” on page 3-20

3-19

3 Simulink Interface

View Virtual World Remotely

3-20

The Simulink 3D Animation software allows you to simulate a process on a host computer
while running the visualization of the process on a client computer. You view the virtual
world on the client computer using a web browser. This client computer is connected to
the host computer through a network using the TCP/IP protocol. Setting up this
configuration requires that you know the name or IP address of the host computer you
want to access from the client computer.

Viewing a virtual world on a client computer is useful for:

* Remote computing

» Presentation of the results over the web

» Distribution of computing and graphical power

This example explains how to display a simulated virtual world on a client computer. In
this case, the client computer is a PC platform with a Simulink 3D Animation Web Viewer.

For a similar example using the Orbisnap viewer, see “View Virtual Worlds Remotely with
Orbisnap” on page 8-18).

In the following example, a Simulink window opens with the model of a simple
automobile. The automobile trajectory (vehicle position and angle) is viewed in virtual
reality:

1 On the host computer, in the MATLAB Command Window, type

vrtutl

A Simulink window opens with the model of an automobile.

View Virtual World Remotely

[P vrtut1

¥

i

Rotation

h

L

il

Speed X

o=

-

—_—
-
R

——

h

-

Y

Speed Z

o=

Caopyright 1998-2014 HUMUSOFT =.r.o. and The Math\Waorks, Inc.

Automaobile.rotation

Automaobile.translation

Double-click the VR Sink block. This block is in the right part of the model window.

A virtual world viewer also opens with a 3-D model of the virtual world associated

with the model.

In the virtual world viewer, select the Simulation menu Block Parameters option.

A VR Sink block parameters dialog box opens.

3-21

3 Simulink Interface

3-22

«). Parameters: ¥R Sink =10lx|
~WR Sink

Wites Simulink values to virual world node fields . Fields to be written are matked by
checkhoxes in the tree viewe. Every marked fisld corresponds to an input port of the block.

[orld properie: WYRML Tres

5 "

ouree e [Show node types ¥ Show field types

Ivrmoum.wrl Browese |

-
)) (aricingo)
e | il | ekad | [Mavigstionlnfo)
Viesnel (Wieswpoird)

~Output

(DirectionalLight)

(Background)

Automobile (Transformm)

M addChildren (MFMode)

X removeChildren (MFMode)
[center (sFvecsn —
rotation (SFRatation)

O scale (5Fvecsn

[scaleCriertation (SFRatation)
translation (SFvec3t)

[bboxcerter (SFvecst)

O bhoxsize (SFvecst) =
T - ~|
| »

QI | Cancel | Help | A pply |

i

.

L]

14

» Camera_cat (Transfortn)
v Cpen YRML Yiewer automatically :
4

[~ Ao wienving from the Internet

Description:

IVR Car in the Mourtains

~EBlock propertie:

Sample time (-1 far inherit):

0.2

Select the Allow viewing from the Internet check box.

Note This option allows any computer connected to the network to view your model.
Do not select this box when you want your model to be private or confidential.

Click OK.

On the client computer, open your HTML5-enabled web browser. In the Address line,
enter the address and Simulink 3D Animation port number for the host computer
running the Simulink software. For example, if the IP address of the host computer is
192.168.0.1, enter:

http://192.168.0.1:8123

To determine your IP address on a Windows system, type cmd, and enter ipconfig.
To determine your IP address on a UNIX system, type the command

ifconfig device name

Click OK. An IP Configuration dialog box opens with a list of your IP, mask, and
gateway addresses.

View Virtual World Remotely

Alternatively, for Windows platforms, you can open a DOS shell and type ipconfig.

The web browser displays the main Simulink 3D Animation HTML page. Only one
virtual world is in the list because you have only one Simulink model open.

/& Simulink 3D Animation - Windows Internet Explorer =

G = [&] ritp:17228.219.1095153 ndex il ~[4| x |[[= Bing P -]
File Edit View Favorites Tools Help % @ Convert v [Select

¢ Favorites 5% @] Generating HTML Output ... @& Web Slice Gallery Suggested Sites
P v B v # v Pagev Safetyv Tools~ @~

(& Simulink 3D Animation

Simulink 3D Animation
Worlds currently available: + Developed by:
s VR Car in the Mountains « Humusoft
Powered by:
« MATLAB ‘X
« VRML 97 ...
€ Local intranet | Protected Mode: Off o H10%

7 Click VR Car in the Mountains.

The web browser displays a 3-D model of the virtual world associated with the model.

3-23

3 Simulink Interface

3-24

10

/4§ simulink 3D Animation - Microsoft Internet Explorer provided by The Mathworks, I... =] E3

JFiIe Edit Wiew Fawvorites Tools Help |f,"
J Address I@ http:fflocalhost:5123 worlds/4/index, html j

|@ Applet com.mathworks.toalbox. e, client, AppYR. nokir ’_ ’_ ’_ ’_ ’_ |§g Local inkranet 4

On the host computer, in the Simulink window, from the Simulation menu, click
Run.

On the client computer, the animation of the scene reflects the process simulated in
the Simulink diagram on the host computer.

You can tune communication between the host and the client computer by setting the
Sample time and Transport buffer size parameters.

Use the web browser controls to move within this virtual world while the simulation
is running.

On the host computer, in the Simulink window, from the Simulation menu, click
Stop. On the client computer, close the web browser window.

See Also

See Also

Related Examples

. “Display Virtual World and Start Simulation” on page 3-13
. “Set the Default Viewer” on page 2-2

. “View Dynamic System Simulations”

. “View Virtual World on Host Computer” on page 3-16

3-25

3 Simulink Interface

Modify Remote Virtual World Via Sensor Events

3-26

Interactive mode allows clients to modify a remote virtual world via events from sensor
nodes defined in the virtual world. Interactive mode is useful when a virtual world
includes a sensor.

Interactive mode is disabled by default on clients. You can enable (or later disable)
interactive mode on a client via context menu in the Web Viewer or by pressing the I key
shortcut.

You can disable interactive mode for a particular virtual world on the host computer. For
details, see the ClientUpdates property, using vrworld/get or vrworld/set.

See Also

Related Examples
. “Add Sensors to Virtual Worlds” on page 5-26
. “Read Sensor Values” on page 5-28

Interact with Generated Code

Interact with Generated Code

You can have a virtual world that you create the Simulink 3D Animation product interact
with code generated by the Simulink Coder product and compiled with a third-party C/C+

+ compiler in the Simulink Desktop Real-Time environment. To do so, use the Simulink
External mode.

See Also

Related Examples
. “Connect Virtual Worlds and Models” on page 3-2

3-27

MATLAB Interface

Although using the Simulink 3D Animation software with the Simulink interface is the
preferred way of working with the Simulink 3D Animation software, you can also use the
MATLAB interface. Enter commands directly in the MATLAB Command Window or use

scripts to control virtual worlds.

“Create vrworld Object for a Virtual World” on page 4-2
“Open a Virtual World with MATLAB” on page 4-4

“Interact with a Virtual World with MATLAB” on page 4-6
“Close and Delete a vrworld Object” on page 4-11
“Animation Recording” on page 4-12

“Define File Name Tokens” on page 4-14

“File Name Tokens” on page 4-16

“Manual 3-D Recording with MATLAB” on page 4-18
“Manual 2-D AVI Recording with MATLAB” on page 4-21
“Scheduled 3-D Recording with MATLAB” on page 4-24
“Scheduled 2-D AVI Recording with MATLAB” on page 4-27
“Record Animations for Unconnected Virtual Worlds” on page 4-30
“Play Animation Files” on page 4-34

4 MATLAB Interface

Create vrworld Object for a Virtual World

4-2

To connect MATLAB to a virtual world and to interact with that virtual world through the
MATLAB command-line interface, create vrworld and vrnode objects. A virtual world
3D file defines a virtual world.

Note The Simulink interface and the MATLAB interface share virtual world objects. This
sharing of objects enables you to use the MATLAB interface to change the properties of
vrworld objects originally created by Simulink with Simulink 3D Animation blocks.

After you create a virtual world, you can create a vrworld object. This procedure uses
the virtual world vrmount.wrl as an example.

1 Open MATLAB. In the MATLAB Command Window, type

myworld = vrworld('vrmount.wrl')

The MATLAB Command Window displays output like

myworld =
vrworld object: 1-by-1

VR Car in the Mountains
(matlabroot/toolbox/s13d/vrdemos/vrmount.wrl)
2 Type

vrwhos

The MATLAB Command Window displays the messages

Closed, associated with
'C:matlabroot\toolbox\sl13d\sl3ddemos\vrmount.wrl'.
Visible for local viewers.

No clients are logged on.

The vrworld object myworld is associated with the virtual world vrmount.wrl. You can
think of the variable myworld as a handle to the vrworld object stored in the MATLAB
workspace.

Your next step is to open a virtual world using the vrworld object. See “Open a Virtual
World with MATLAB” on page 4-4.

See Also

See Also

Functions
vrworld

Related Examples

. “Open a Virtual World with MATLAB” on page 4-4

. “Interact with a Virtual World with MATLAB” on page 4-6
. “Close and Delete a vrworld Object” on page 4-11

4-3

4 MATLAB Interface

Open a Virtual World with MATLAB

Open a virtual world to view the virtual world in a virtual world viewer, scan its structure,
and change virtual world properties from the MATLAB Command Window.

4-4

After you create a vrworld object, you can open the virtual world by using the vrworld
object associated with that virtual world. This procedure uses the vrworld object
myworld associated with the virtual world vrmount.wrl as an example:

1

In the MATLAB Command Window, type
open(myworld);

The MATLAB Command Window opens the virtual world vrmount.wrl.

Type

set(myworld, 'Description', 'My first virtual world');

The Description property is changed to My first virtual world. This
description displays in all Simulink 3D Animation object listings, in the title bar of the

Simulink 3D Animation Viewer, and in the list of virtual worlds on the Simulink 3D
Animation HTML page.

Display the virtual world vrmount.wrl. Type
view(myworld)

The viewer that is set as the default viewer displays the virtual scene. The default
viewer is typically the Simulink 3D Animation Viewer unless you have a different
viewer set.

Alternatively, you can display the virtual world in an HTML5-enabled web browser.

1
2

Repeat steps 1 and 2 of the preceding procedure.
Open a web browser. In the Address box, type

http://localhost:8123

The browser displays the Simulink 3D Animation HTML page with a link to My first
virtual world. The number 8123 is the default Simulink 3D Animation port number.
If you set a different port number on your system, enter that number in place of 8123
and restart MATLAB. For more information on the Simulink 3D Animation HTML
page, see “View Virtual World on Host Computer” on page 3-16.

See Also

3 If the web browser has the VRML or X3D plug-in installed, in the browser window,
click My first virtual world.

4 Your default HTML5-enabled web browser displays the virtual world vrmount.wrl.

Note If your web browser is not HTML5-enabled, clicking a virtual world link such
as My first virtual world results in a broken link message. The browser cannot
display the virtual world.

For more information on changing your default viewer, see “Set the Default Viewer” on
page 2-2.

See Also

Functions
vrworld

Related Examples

. “Create vrworld Object for a Virtual World” on page 4-2
. “Interact with a Virtual World with MATLAB” on page 4-6
. “Close and Delete a vrworld Object” on page 4-11

4 MATLAB Interface

Interact with a Virtual World with MATLAB

4-6

In this section...

“Set Values for Nodes” on page 4-6
“Read Sensor Values Using MATLAB” on page 4-9

Set Values for Nodes

In the life cycle of a vrworld object you can set new values for all the available virtual
world nodes and their fields using vrnode object methods. This way, you can change and
control the degrees of freedom for the virtual world from within the MATLAB
environment.

An object of type vrworld contains nodes named in the virtual world 3D file using the
DEF statement. These nodes are of type vrnode. For more information, see vrworld and
vrnode functions.

After you open a vrworld object, you can get a list of available nodes in the virtual world.
This procedure uses the vrworld object myworld and the virtual world vrmount.wrl as
an example. To create the myworld, see “Create vrworld Object for a Virtual World” on
page 4-2.

1 Inthe MATLAB Command Window, type
nodes (myworld);

The MATLAB Command Window displays a list of the vrnode objects and their fields
that are accessible from the Simulink 3D Animation software.

Tunnel (Transform) [My first virtual world]
Road (Shape) [My first virtual world]

Bridge (Shape) [My first virtual world]

River (Shape) [My first virtual world]
ElevApp (Appearance) [My first virtual world]
Canal (Shape) [My first virtual world]

Wood (Group) [My first virtual world]

Treel (Group) [My first virtual world]

Wheel (Shape) [My first virtual world]
Automobile (Transform) [My first virtual world]
VPfollow (Viewpoint) [My first virtual world]

Interact with a Virtual World with MATLAB

Camera_car (Transform) [My first virtual world]
Viewl (Viewpoint) [My first virtual world]

Type

mynodes = get(myworld, 'Nodes')

The MATLAB software creates an array of vrnode objects corresponding to the
virtual world nodes and displays

mynodes =
vrnode object: 13-by-1

Tunnel (Transform) [My first virtual world]
Road (Shape) [My first virtual world]

Bridge (Shape) [My first virtual world]

River (Shape) [My first virtual world]

ElevApp (Appearance) [My first virtual world]
Canal (Shape) [My first virtual world]

Wood (Group) [My first virtual world]

Treel (Group) [My first virtual world]

Wheel (Shape) [My first virtual world]
Automobile (Transform) [My first virtual world]
VPfollow (Viewpoint) [My first virtual world]
Camera_car (Transform) [My first virtual world]
Viewl (Viewpoint) [My first virtual world]

Type

whos

The MATLAB Command Window displays the messages

Name Size Bytes Class
ans 1x1 132 vrfigure object
mynodes 13x1 3564 vrnode object
myworld 1x1 132 vrworld object

Now you can get node characteristics and set new values for certain node properties.
For example, you can change the position of the automobile by using Automobile,
which is the fourth node in the virtual world.

Access the fields of the Automobile node by typing

fields(myworld.Automobile)

4 MATLAB Interface

or

fields(mynodes(10));

The MATLAB Command Window displays information about the Automobile node.

Field Access Type Sync
addChildren eventln MFNode off
removeChildren eventIn MFNode off
children exposedField MFNode off
center exposedField SFVec3f off
rotation exposedField SFRotation off
scale exposedField SFVec3f off
scaleOrientation exposedField SFRotation off
translation exposedField SFVec3f off
bboxCenter field SFVec3f off
bboxSize field SFVec3f off

The Automobile node is of type Transform. This node allows you to change its
position by changing its translation field values. From the list, you can see that
translation requires three values, representing the [x y z] coordinates of the
object.

5 Type
view(myworld)

Your default viewer opens and displays the virtual world vrmount.wrl.

6 Move the MATLAB window and the browser window side by side so you can view
both at the same time. In the MATLAB Command Window, type

myworld.Automobile.translation = [15 0.25 20];

The MATLAB sets a new position for the Automobile node. You can observe that the
car is repositioned in the virtual world browser window.

You can change the node fields listed by using the function vrnode/setfield.

Note The dot notation is the preferred method for accessing nodes.

4-8

Interact with a Virtual World with MATLAB

Read Sensor Values Using MATLAB

To read a value of a readable field (either exposedField or eventQut), first synchronize
that field with the vrnode/sync method. After synchronization, each time the field
changes in the scene, the field value updates on the host. You can then read the value of
the field with the vrnode/getfield method or directly access the field value using dot
notation.

The virtual scene for the Magnetic Levitation Model example, maglev.wrl, contains a
PlaneSensor (with the DEF name 'Grab_Sensor'). The PlaneSensor is attached to the
ball geometry to register your attempts to move the ball up or down when grabbing it
using the mouse. The example uses the sensor fields minPosition and maxPosition to
restrict movement in other directions. You can use the output of the sensor translation
field as the new setpoint for the ball position controller. You can read the sensor output
value into a MATLAB variable setpoint.

1 Create the vrworld object and open the world.

wh = vrworld('maglev.wrl');
open(wh);

2 Get the node handle.

nh = vrnode(wh, 'Grab Sensor');
3 Synchronize the translation field.

sync(nh, 'translation', 'on');
4 Read the synchronized field value, using one of these three alternatives:

setpoint = getfield(nh, 'translation');
setpoint = nh.translation;
setpoint = wh.Grab_Sensor.translation;

Global Coordinates for Rotation and Translation

Rotation and translation values for a Transform object are specified in local coordinates,
relative to the parent object of the object. Simulink 3D Animation provides two extensions
for converting rotation and translation values into global coordinates: rotation abs
and translation_abs. To access these global coordinates, use dot notation with the
translation or rotation field, adding abs to the field name. This example shows the
difference between the local and global coordinates for translation:

4-9

matlab:showdemo('vrmaglev')

4 MATLAB Interface

vrview('vrmanipul.wrl');
get(w, 'Nodes"');

w.Grip Reference;
.translation
.translation_abs

ans =

0 -0.1000 0

-3.0406 -3.0000 2.3334

See Also

Functions
vrworld

Related Examples

. “Create vrworld Object for a Virtual World” on page 4-2
. “Open a Virtual World with MATLAB” on page 4-4

. “Close and Delete a vrworld Object” on page 4-11

4-10

Close and Delete a vrworld Object

Close and Delete a vrworld Object

After you are finished with a session, close all open virtual worlds and remove them from
memory:

1 Inthe MATLAB Command Window, type

close(myworld);
delete(myworld);

The virtual world representation of the vrworld object myworld is removed from
memory. All possible connections to the viewer and browser are closed and the
virtual world name is removed from the list of available worlds.

Note Closing and deleting a virtual world does not delete the vrworld object handle
myworld from the MATLAB workspace.

See Also

Functions
vrworld

Related Examples

. “Create vrworld Object for a Virtual World” on page 4-2
. “Open a Virtual World with MATLAB” on page 4-4
. “Interact with a Virtual World with MATLAB” on page 4-6

4-11

4 MATLAB Interface

Animation Recording

4-12

In this section...

“Recording Formats” on page 4-12
“Manual and Scheduled Animation Recording” on page 4-13

The Simulink 3D Animation software enables you to record animations of virtual scenes
that the Simulink or MATLAB product controls. You can record simulations through either
the Simulink 3D Animation Viewer (described in “Simulink 3D Animation Viewer” on page
7-5) or the MATLAB interface. You can then play back these animations offline, in other
words, independent of the MATLAB, Simulink, or Simulink 3D Animation products. You
can generate such files for presentations, to distribute simulation results, or to generate
archives.

Note If you are working with virtual scenes controlled from MATLAB, you can record
virtual scenes through the MATLAB interface. Optimally, use the Simulink 3D Animation
Viewer to record animations of virtual worlds associated with Simulink models. This
method ensures that all necessary virtual world and vrfigure properties are properly
set to record simulations. For details, see “Record Offline Animations” on page 7-42.

Recording Formats

You can save the virtual world offline animation data in the following formats:

* 3-D virtual world file — The Simulink 3D Animation software traces object movements
and saves that data into a virtual world 3D file using VRML97 standard interpolators.
You can then view these files with the Simulink 3D Animation Viewer. 3-D VRML files
typically use much less disk space than Audio Video Interleave (AVI) files. If you make
any navigation movements in the Simulink 3D Animation Viewer while recording the
animation, the Simulink 3D Animation software does not save any of these movements.

Note If you distribute virtual world 3D animation files, be sure to distribute all the
inlined object and texture files referenced in the original virtual world 3D world file.

* 2-D Audio Video Interleave (AVI) file — The Simulink 3D Animation software writes
animation data into an .avi file. The Simulink 3D Animation software uses vrfigure
objects to record 2-D animation files. The recorded 2-D animation reflects exactly what

See Also

you see in the viewer window. It includes any navigation movements you make during
the recording.

Note While recording 2-D .avi animation data, always ensure that the Simulink 3D
Animation Viewer is the topmost window and fully visible. Graphics acceleration
limitations can prevent the proper recording of 2-D animation otherwise.

Manual and Scheduled Animation Recording

You can use MATLAB to either manually record an animation or schedule a preset time
interval for recording. For details, see:

* “Manual 3-D Recording with MATLAB” on page 4-18

* “Manual 2-D AVI Recording with MATLAB” on page 4-21

* “Scheduled 3-D Recording with MATLAB” on page 4-24

* “Scheduled 2-D AVI Recording with MATLAB” on page 4-27

See Also

Functions
vrplay | vrview

Related Examples
. “Share Visualizations”
. “Define File Name Tokens” on page 4-14

More About
. “File Name Tokens” on page 4-16

4-13

4 MATLAB Interface

Define File Name Tokens

4-14

In this section...

“Default File Name Format” on page 4-14
“Uses for File Name Tokens” on page 4-14

Default File Name Format

By default, the Simulink 3D Animation Viewer records simulations or captures virtual
scene frames in a file named with the following format:

%f _anim %n.%e

This format creates a unique file name each time you capture a frame or record the
animation. The file name uses the %f, %n, and %e tokens.

The %f token is replaced with the name of the virtual world associated with the model.
The %n token is a number that increments each time that you record a simulation for the
same virtual world. For example, if the name of the virtual world file is vrplanets.vrml
and you record a simulation for the first time, the animation file is

vrplanets anim 1.wrl. If you record the simulation a second time, the animation file
name is vrplanets anim 2.wrl. In the case of frame captures, capturing another
frame of the scene increments the number.

The %e token represents the virtual world 3D file extension (.wrl, .x3d, or .x3dv) as the
extension of the virtual world that drives the animation. By default, the %e token uses the
file extension of the virtual world 3D file that drives the animation. The VR Sink and VR
Source block Source file parameter specifies the file extension of the virtual world. You
can specify a different extension. However, if the file extension in the Source file
parameter is . x3d or . x3dv, you cannot set %e token to .wrl (VRML).

Uses for File Name Tokens

You can use several tokens to customize the automated generation of frame capture or
animation files. To use these tokens to create varying frame capture or animation file
names, you can:

* Create files whose root names are the same as the root names of the virtual world.
This option is useful if you use different virtual worlds for one model.

See Also

* Create files in directories relative to the virtual world location. This option is useful if
you want to ensure that the virtual world file and frame capture or animation file are
in the same folder.

* Create rolling numbered file names such that subsequent frame captures or runs of
the model simulation create incrementally numbered file names. This approach is
useful if you expect to create files of different parts of the model simulation. This
feature allows you to capture a frame or run a Simulink model multiple times, but
create a unique file each time.

* Create multiple file names with time or date stamps, with a unique file created each
time.

See “File Name Tokens” on page 4-16 for a summary of the file name tokens.

See Also

Related Examples
. “Share Visualizations’

4

More About
. “File Name Tokens” on page 4-16

4-15

4 MATLAB Interface

File Name Tokens

4-16

The software supports various file naming formats using file tokens. By default, the
Viewer captures virtual scene frames or records simulations in a file named with the
following format: %f _anim_%n.%e. This format creates a unique file name each time you
capture a frame or record the animation.

The following tokens are the same for frame capture (.tif or .png) or animation
(.wrl, .x3d, .x3dv, and .avi) files.

Token

Description

°
N

The current incremental number replaces this token in the file name string.
Each subsequent frame capture or run of the simulation increments the
number. For example, the format %f anim %n.wrl saves the animation to
vrplanets anim 1.wrl on the first run, vrplanets anim 2.wrl on the
second run, and so forth.

o?
—h

The virtual world file name replaces this token in the file name string. For
example, the format %f anim %D.wrl saves the animation to
vrplanets anim 29.wrl.

oP
D

The virtual world file name replaces this token represents with the virtual
world 3D file extension (.wrl, .x3d, or .x3dv). By default, the %e token
uses the file extension of the virtual world 3D file that drives the animation.
The VR Sink and VR Source block Source file parameter specifies the file
extension of the virtual world.

You can specify a different extension. However, if the file extension in the
Source file parameter is . x3d or .x3dv, you cannot set %e token to .wrl
(VRML).

o°
o

The full path to the virtual world 3D file replaces this token in the file name
string and creates files in directories relative to the virtual world file
location. For example, the format %d/animdir/%f anim %n.avi saves the
animation in the animdir subfolder of the folder containing the virtual world
3D file. If animdir subfolder does not exist, the software creates the
animdir subfolder. This token is most helpful if you want to ensure that the
virtual world file and animation file are in the same folder.

o°
=<

The current four-digit year replaces this token in the file name string. For
example, the format %f anim %Y.wrl saves the animation to
vrplanets anim 2015.wrl for the year 2015.

See Also

Token

Description

P
=

The current month replaces this token in the file name string. For example,
the format %f anim %M.wrl saves the animation to
vrplanets anim 4.wrl for a start record time in April.

oP
o

The current day in the month replaces this token in the file name string. For
example, the format %f anim %D.wrl saves the animation to
vrplanets anim 29.wrl for the 29th day of the month.

o®
>

The current hour replaces this token in the file name string. For example, the
format %f anim %h.wrl saves the animation to vrplanets anim 14.wrl
for any time between 14:00 and 15:00.

o®
3

The current minute replaces this token in the file name string. For example,
the format %f anim S%h%m.wrl saves the animation to
vrplanets anim 1434 .wrl for a start record time of 14:34.

o°
n

The current second replaces this token in the file name string. For example,
the format St anim %h%m%s.wrl saves the animation to
vrplanets anim 150430.wrl for a start record time of 15:04:30.

See Also

Related Examples
. “Define File Name Tokens” on page 4-14

. “Share Visualizations”

4-17

4 MATLAB Interface

Manual 3-D Recording with MATLAB

4-18

This topic describes how to record a 3-D animation manually using the MATLAB interface
for a virtual world that is associated with a Simulink model. In this example, the timing of
the animation file derives from the simulation time. One second of the recorded animation
time corresponds to one second of Simulink time. You create and record the animation file
by interactively starting and stopping the recording from the MATLAB Command Window.

This procedure uses the vrplanets example. It describes how to create a virtual world
3D animation file name with the default name format.

1 Run the Simulink model for vrplanets. In the MATLAB window, type

vrplanets

The Simulink model appears. Also by default, the Simulink 3D Animation Viewer for
that model is loaded and becomes active. If the viewer does not appear, double-click
the Simulink® 3D Animation block in the Simulink model.

2 To work with the virtual world associated with vrplanets from the MATLAB
interface, retrieve the virtual world handle. Use the vrwhos command. Type

vrwhos

If the result shows that only one vrworld object is in the workspace, assign its
handle directly to a variable. Type

myworld = vrwho;

If multiple virtual worlds are listed, select which of these virtual worlds you want to
manipulate. To select the virtual world, you can use indexing or a selection method
using a string comparison of virtual world descriptions. For the indexing method,

type
worlds = vrwho;
myworld = worlds(1);

For the string comparison method, type

worlds = vrwho;
myworld =
worlds(strcmp('Planets',get(worlds, 'Description')));

3 To have the Simulink 3D Animation software manually record the animation, set the
RecordMode property to manual. Type

Manual 3-D Recording with MATLAB

set(myworld, 'RecordMode’', 'manual');

Direct the Simulink 3D Animation software to record the animation to a virtual world
3D format file. Type

set(myworld, 'Record3D','on');

Run the Simulink model. From the Simulation menu, select Mode > Normal, then
click Simulation > Run. Alternatively, if you are using the Simulink 3D Animation
default viewer, you can run the Simulink model with one of the following from the
viewer.

* From the menu bar, select the Simulation menu Start option to start or stop the
simulation.

* From the toolbar, click Start/pause/continue simulation to start the simulation.

* From the keyboard, press Ctrl+T to start the simulation.

As the simulation runs, start recording the animation by setting the virtual world

Recording property. Type

set(myworld, 'Recording', 'on');

This setting turns on the recording state.
When you want to stop the recording operation, type:

set(myworld, 'Recording', 'off');

The Simulink 3D Animation software stops recording the animation. The Simulink 3D
Animation software creates the file vrplanets _anim 1.wrl in the current working
folder. If the simulation stops before you stop recording, the recording operation
stops and creates the animation file.

Stop the simulation. You can use one of the following from the viewer.

* From the menu bar, select the Simulation menu Stop option to stop the
simulation.

* From the toolbar, click Stop simulation to stop the simulation.

* From the keyboard, press Ctrl+T to stop the simulation.

You do not need to stop the recording manually before stopping the simulation. If you

do not manually stop the recording, the recording operation do